
OTIC FILE COPY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

NN
ITI

THESIS
AN INVESTIGATION OF THE

METHODOLOGY FOR SOFTWARE TRANSLATION
FROM PASCAL TO C OF AN

UNDOCUMENTED MICROCOMPUTER PROGRAM

by

Charles W. Bell

March, 1990

Thesis Advisor: LCDR Rachel Griffin

Approved for public release: distribution is unlimited.

JNCLASSIFIED
CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified I
SECURITY CLASSIFICATION AUTHORITY 3. DISTRI.BUTION/AVAILABILITY OF REPORT

SCHEDULE Approved for public release; Distribution
. DECLASSIFICATIONDOWNGRAING SEDUis unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

m. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School 037 Naval Postgraduate School

ADDRESS (City, State, and ZIP Code) 7b. ADDRESS."City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OPA IZATION (If applicable)De~ense Systems Managemen 1

College I
c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Director, DSS Directorate (DRI-S) PROGRAM PROJECT TASK WORK UNIT

Defense Systems Management College ELEMENT NO. NO. NO ACCESSION NO.

Fort Belvior, VA 22060-5426 .,
1. TITLE (Include Security Classification)

AN INVESTIGATION OF THE METHODOLOGY FOR SOFTWARE TRANSLATION FROM
PASCAL TO C OF AN UNDOCUMENTED MICROCOMPUTER PROGRAM

2. PERSONAL AU THOR(S) W.Be1, Charles W

3a. TYPE OF REPORT 1 3b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Master's Thesis FROM TO - March 1990 120

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

I7. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software Maintenance, Software Translation, Inverse
Transformation Methodology, Undocumented Microcomputer
Program, Software Reusability,

I ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this thesis is to investigate software reusability applications and the practical
utilization of those applications in the performance of software maintenance. The translation
of a functioning program from one high level language to another was selected as the type
of software reusability effort to be explored. Five translation methodologies were
investigated and the inverse transformation methodology was chosen to exercise the practical
application of software reusability for a specific case study. A design strategy and
translation approach was developed based on the inverse transformation methodology. The
translation approach was followed in performing the translation of the case study. The
results of the application of the methodology to the case study is described and the
methodology is evaluated on its usefulness as a tool for software reuse. -

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

rXUNCLASSIFIED/UNLIMITED El SAME AS RPT EC DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) e2c. OFFICE SYMBOL

LCDR Rachel Griffin (408) 646-2073 1 CS/gr
DD FORM 1473. 84 MAR 83 APR edIion may be used until Pyha, ,tpd SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete 0 u.S. covernmont Plf ntf i Offiee, 196-406- .4.
i

69CURITY CLASSIFICAION OF TMIS VA09

18. Subject Terms (continued)

Transformation Based Maintenance Model, Attribute Grammar Technology,

Automated Source Code Translators

Accession For

2, 7 FA!

6

UNCLA SSIFIED
SECURITY CLASSIFICATION OF TmiIS PAGE

Approved for public release; distribution is unlimited.

An Investigation of the

Methodology for Software Translation

From PASCAL to C of an

Undocumented Microcomputer Program

by

Charles W. Bell

Lieutenant Commander, United States Navy

B.S., United States Naval Academy, 1978

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

1-arch 1990

Author: /AAL<14

Charles W. Bell

Approved by: CA Nd' W
Rachel Griffin Thesis Advisor

Daniel R. Dolk, Second Reader

rz" David Whipple, Chairman

Department of Administrative Sciences

iii

ABSTRACT

The purpose of this thesis is to investigate software

r eusability applications and the practical utilization of

those applications in the performance of software maintenance.

The translation of a functioning program from one high level

language to another was selected as the type of software

reusability effort to be explored. Five translation

methodologies were investigated and the inverse transformation

methodology was chosen to exercise the practical application

of software reusability for a specific case study. A design

strategy and translation approach was developed based on the

inverse transformation methodology. The translation approach

was followed in performing the translation of the case study.

The results of the application of the methodology to the case

study is described and the methodology is evaluated on its

usefulness as a tool for software reuse.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1

A. DISCUSSION 1

B. METHODOLOGY 1

II. BACKGROUND 5

A. RELATIONSHIPS AND DEFINITIONS 5

1. Software Reusability 5

2. Software Maintenance 15

3. Software Translation 16

4. Summary and Purpose 17

B. DESCRIPTION OF THE APPLICATION 20

1. Application Sponsor and Customers 20

2. Description of the Parent Application . . 20

3. The Government Activity Tasking (GAT) Module 22

a. Technical Description 23

(1) Hardware 23

(2) Software 23

(3) Interfaces and Communications. . . 24

b. Users 24

c. Functionality 25

v

III. UNDERSTANDING THE SOFTWARE 26

A. INFORMATION SOURCES 26

1. Available Documentation 28

2. User's and Programmers 30

B. PROGRAMMER AIDS 30

1. Automated Tools 30

a. Deciphering Source Code 31

b. Automated Source Code Translation . . 32

2. Structured Systems Design 32

C. PROGRAM DETAILS 33

1. Structure 33

2. Control Flow 35

3. Variables 36

4. Input Sources 37

5. Output Destinations 38

D. APPLICATION INCONSISTENCIES AND RECOMMENDATIONS 38

1. Screen Movement 38

2. Function Key Use 39

3. Report Generator 39

4. Other 40

IV. SOFTWARE TRANSLATION METHODOLOGIES 41

vi

A. OVERVIEW 41

B. COMPARISON OF C AND PASCAL 42

1. Purpose and Goal of the Languages 43

2. Comparison of Features 45

a. Data Types 45

b. Statements 46

c. Program Structure 47

C. METHODOLOGIES REVIEWED 48

1. Inverse Transformation 48

2. Transformation Based Maintenance Model . . 51

3. Attribute Grammar Technology 53

4. Manual Re-implementation 60

5. Automated Source Code Translation 61

a. TPQC Features 62

b. PTC Features 63

D. COMPARISON AND SELECTION 65

V. DESIGN STRATEGY AND TRANSLATION APPROACH 68

A. OVERVIEW 68

B. REQUIREMENTS ANALYSIS 69

C. DESIGN STRATEGY 70

1. Structured English 71

2. Structure Chart 72

vii

3. Data Dictionary 74

D. TRANSLATION APPROACH 76

1. Step 1: Develop the Design Specification 77

2. Step 2: Evaluate Screen Display/Data Entry

Development Section 77

3. Step 3: Program the Screen Display/Data Entry

Development Section 79

4. Step 4: Evaluate the Database Management

Development Section 80

5. Step 5: Program the Database Management

Development Section 82

6. Step 6: Connect Database Management and Screen

Display/Data Entry Prototypes 82

7. Step 7: Evaluate the Print Routines Development

Z :ction 83

8. Step 8: Program the Print Routines Development

Section 84

9. Step 9: Connect the Print Routines Prototype 85

10. Step 10: Test the Program 85

11. Step 11: Review the Tested Program 87

12. Step 12: Ongoing Translation Steps 87

VI. CASE STUDY APPLICATION 89

viii

A. OVERVIEW 89

B. TRANSLATION APPROACH APPLICATION 89

1. Step 1: Develop the Design Specification. 89

2. Step 2: Evaluate Screen Display/Data Entry

Development Section 92

3. Step 3: Program the Screen Display/Data Entry

Development Section 93

4. Step 4: Evaluate the Database Management

Development Section 96

5. Step 5: Program the Database Management

Development Section 97

6. Step 6: Connect Database Management and Screen

Display/Data Entry Prototypes 98

7. Step 7: Evaluate the Print Routines Development

Section 99

8. Step 8: Program the Print Routines Development

Section 99

9. Step 9: Connect the Print Routines Prototype 101

10. Step 10: Test the Program 101

11. Step 11: Review the Tested Program 102

12. Step 12: Ongoing Translation Steps 102

C. CORRECTION OF APPLICATION INCONSISTENCIES . . 103

1. Screen Movement 103

ix

'.Function Key Use...............103

3. Report Generator...............104

4. Other.....................104

VII. CONCLUSION.....................105

LIST OF REFERENCES....................107

INITIAL DISTRIBUTION LIST.................109

x

I. INTRODUCTION

A. DISCUSSION

New software design and development costs are spiraling

upward to the point where they will exceed the cost of the

hardware. When the costs of maintaining the software are also

considered, life cycle software costs constitute the largest

portion of automated system costs [Ref. 1]. The demand for

more and increasingly complex software already outstrips the

capability of programmers to produce it, and the gap .s

expected to widen in the foreseeable future. This bleak

picture is the major motivating factor behind finding ways to

reduce costs and make the most efficient use of limited

programmer resources. Software reusability addresses cost and

resource limitations. The reuse of already developed software

has become an important area of research for software

developers and is receiving more attention by software

application purchasers.

B. METHODOLOGY

This thesis approaches the software translation case study

in three steps:

* Understanding the program

" Determining the translation methodology

" Establishing the design specification

This case study adheres to the strictest definition of

software translation. The case study does not include the

correction of program flaws or upgrades to the program. The

need to correct program flaws or make program upgrades is

often an overriding factor in decisions to initiate

maintenance, but for this case study it was assumed that the

target program is both functional and useful in its present

form. The software translation was performed due to a change

in the operating system requirements. Further upgrade or

modification of the program that may be desired is defined as

a separate maintenance effort and is not addressed by this

case study.

The first step in software translation is understanding

the program. This step assumes that the translator has no

prior knowledge of or experience with the original

application, a common circumstance in addressing software

maintenance. The translator must acquire an overall

understanding of what the application does, determine the

application's level of modularity, become familiar with the

variables used, and define all of the input and output.

Equally important is an understanding, from the user's

2

perspective, of how the program is used. Gaining this

understanding entails more than just a study of the source

code, and includes reviewing or recreating the early software

development life cycle (SDLC) phases of the application. Th

SDLC will be discussed in more detail in future chapters.

The second step is determining the translation

methodology. This step examines and analyzes several

methodologies and their applicability to the case study.

Determination of the translation methodology must be completed

before establishing the design specifications because most

translation strategies require that the design specifications

be tailored to the specific needs of that strategy. The

following methodologies were considered:

" Manual Re-implementation

" Attribute Grammar Technology

" Inverse Transformation

" Transformation Based Maintenance Model

" Automated Source Code Translator

Based on an evaluation of these methodologies, a specific

strategy was defined which establishes the basis for the

software translation.

The third step, establishing the design specifications,

explicitly defines and documents the application in the form

3

required by the selected translation methodology. The

translated code is built directly from the design

specifications.

The result of this effort, the translated program, is

supported by the design documentation, a programmer's guide

and a user's guide. The programmer's guide, including the

design documentation, is a stand alon tocument that describes

the translated code to support maintenance and future

development efforts. The user's guide is constructed for

immediate use by program users.

4

II. BACKGROUND

A. RELATIONSHIPS AND DEFINITIONS

1. Software Reusability

Software reusability is a simple concept in theory.

Since the word "reuse" means to use something more than once,

"software reuse" should imply using software more than once.

The immediate question then becomes "How is software defined

in the context of reusability?". There are a number of

definitions which have been proposed by researchers and

programmers for software reusability. There is also the

absence of a definitive description of what should be

considered for reuse and little consensus by researchers on

terminology or methodology.

A narrow definition of software reusability is the

reuse of code. Code can be reused in a number of ways: using

previously developed library routines in a new program;

porting functions without major changes from one program or

system to another; and translating a program or a portion of

a program from one environment to another [Ref. 2]. Expand

this limited definition to include application generators.

5

An application generator is software that generates new code.

Therefore, using an application generator more than once is

software reuse.

Restricting software reusability to code is still too

limiting. The software development life cycle should not be

excluded from consideration. Every phase of development from

the requirements analysis to implementation and maintenance

should be examined. Methodologies have been developed to

reuse phases from one development effort in another effort.

This, too, is software reusability. Where is the line drawn?

What is reusable and what is not? If it is reusable, then how

and when should it be reused? There are no definitive

answers.

Given this broader scope, applications of software

reusability have been categorized in a number of ways. Common

categories are:

" Commercial software packages

" Code fragments

* Application generators

" Requirements analysis

" Design specifications

The above list was compiled from articles by Horowitz

[Ref. 2] and Jones [Ref. 1] and is not comprehensive. Any

6

computer language based software development tool used more

than once meets this broad definition of software reusability.

Commercial software packages, also called off-the-

shelf software, are not usually associated with the idea of

software reusability. However, the use of off-the shelf

operating systems, compilers, and general applications such

as spreadsheets, word processors, and data base managers are

intended to save development time, dollars, and programmer

effort. The software is developed once, is centrally

maintained, and is immediately compatible to varying degrees

on a variety of systems. Any off-the-shelf software used in

the development of more than one system can be considered

reusable software. [Ref. 1]

Code fragments include library subroutines, small and

large subsystems, and entire programs. The use of subroutines

and subsystems range from organization specific code that is

reusable only on a particular system to generic routines that

are independent of its environment. High level languages such

as ADA and C were designed to encourage the development and

use of generic routines. These routines can be included in

any program written in that language. Many of these routines

are part of the standard library of functions commonly

provided with that language's compiler. Some organizations

7

also maintain a database of local routines specific to that

organization. These routines are unique to the organization's

particular software and hardware architecture. Entire

programs are reused when they are translated to a new

environment. Environmental changes generally entail

translating a program to a new language or recompiling it for

execution on different hardware. The key is to preserve code

in a form that can be reused. [Ref. 3]

An application generator is a software product used to

generate other software programs. Originally, application

generators were too complicated for non-programmers and had

very limited usefulness. The code produced by early

application generators was extremely inefficient and required

additional manual programming effort before the code could be

used. Application generators are becoming increasingly

sophisticated, using non-procedural languages to provide a

non-technical interface with the user. They are also becoming

more versatile in being able to create programs for a variety

of requirements. The user enters information into the system

as prompted by the generator and then the application

generator produces an executable program. The created program

is bug-free, eliminating the usual debugging effort, and

future modifications can be made using the application

8

generator. Programs created with application generators are

still inefficient, and there are few commercial systems

capable of handling large, complex software requirements.

The most important categories of software reusability

are requirements analysis and design specification, the first

two phases of the software development life cycle. To

appreciate the importance of the reusability of these two

phases, a description of the software development life cycle

is necessary.

The software development life cycle (SDLC) defines the

steps to develop a software program, beginning when a need is

recognized. There is no standard, universally accepted SDLC.

The SDLC presented in this thesis represents one approach.

The SDLC phases are:

" Requirements Analysis

* Design Specifications

" Coding and Testing

* Implementation

" Maintenance

The specific steps within each phase are listed in

Figure 1 [Ref. 4].

9

D IE N TI FY 2 SURVEY THE 3.DEFINE
NEEDSITUATION ROMWS

____REQUIR__EREQUIREMENT

ANA LYS IS

USER 4.EVALUAT E

ALEAA \SOLUTIONS

- CORRECTION
DEFIN,'TION

ENVIRONMENT
-U PG AAOF

-TRANSLATION
DSG

6 PEFORM SPEC IF ICATIONS
D ETA ILED
DESIGN

10 ACCEPTANCE 9.T EST 8 CODE
M PL E- - TESTING PROGRAMPRGA

MEN NTAT ION

CODING AND T7\~

Figure 1 - Software Development Life Cycle

10

The requirements phase is initiated by identifying a

need. This need can address a problem, an opportunity, or a

directive. It can come from a user specified request, a

mandate by the organization or higher level authority, or

other source. Once identified, the need becomes a

requirement. The requirement must be carefully defined in

terms of exactly what functions are required without getting

into specifics on the type of hardware or software. The

requirement definition includes background on why it is

needed, the advantages development of this requirement would

provide, the resources that would have to be committed, and

the impact of not developing the requirement. If the

requirement is accepted for further development, the

requirements definition becomes the baselire from which all

future development phases are dependant. The information

gathered during the requirements analysis is formalized in a

requirements statement. Errors at this early level of

development are compounded and magnified in the later phases

if not corrected.

Design specifications are the blueprint the programmer

works from to produce the code. Design specifications are

created almost entirely from the requirements definition.

11

Preliminary design organizes the requirements definition in

a manner suitable for computer execution. Detailed design

specifications describes details about file structure, data

descriptions, and program flow [Ref. 5]. Errors introduced

in this phase may not be detected until acceptance testing is

done. Correcting these errors can require significant

recoding effort.

Coding is done directly from the design

specifications. Testing is done on individual modules as they

are completed and on the entire program as the modules are

integrated. Program testers are concerned with ensuring

successful compilation and compliance with the design

specification. Acceptance testing is performed with the user

and other organizational representatives to validate that the

program meets user requirements. It is not uncommon for

programs that fully comply with the requirements definition

to still fail the acceptance test. Incomplete or poorly

defined requirements and inaccurate design specifications lead

to problems during acceptance testing.

Implementation involves the completion of user

manuals, the training of users, and installation of the new

program in the actual operating environment. S o f t w a r e

maintenance functions consist of correcting program flaws,

12

upgrading programs with improved capabilities, and

translating programs into a new form because of changes in

hardware, operating systems, technology, or language.

Software maintenance once was considered independent of the

development life cycle. The functions of maintenance were

rarely addressed during development. Once implementation was

complete, the products of development other than the completed

program were not used to aid maintenance. Software

maintenance is now included as part of the system development

life cycle for two reasons. Foremost is the fact that more

then two-thirds of the total cost of a system, from inception

to scrap heap, is spent on maintenance [Ref. 1]. The

inclusion of software maintenance as part of the development

life cycle focused attention on these osts. Second, valuable

information (documentation and lessons learned) from the other

phases of development is being lost in the maintenance phase.

This information has proven useful in lowering the huge cost

of maintenance.

Software developers are spending increasing time on

the requirements analysis and design specifications SDLC

phases because of the previously noted ripple effect that

errors and oversights have on later phases. Additionally,

developers want to be able to maximize the quality of their

13

high level development effort by reusing successful early

development phases during the maintenance phase and with other

projects. The potential for software reusability can be

improved by formalizing and standardizing the requirements and

design phases of the SDLC. Specific examples of this process

are discussed in Chapter IV and include inverse

transformations, the transformation based maintenance model,

and attribute grammar technology.

There are a number of problems related to software

reusability. A software developer who desires to reuse

software must be able to locate reusable products, appraise

their usefulness, discover any modifications that are

necessary to adapt the reusable product, and evaluate the

impact of using a reusable product on later phases of

development. None of these basic steps can be readily

accomplished at present. Although numerous libraries of

reusable code are available, there is no standardized method

of identifying what the reusable product does or what

restrictions it may have. Trying to figure out what reusable

code might be useful and what it does is similar to perusing

a computer bulletin board for microcomputer programs. There

are thousands of programs availabie, Dut there it r- way .

know which ones are best or even useful. The requirements

14

analysis and design specification phases of development are

lacking even rudimentary libraries of reusable products,

although there is an abundance of successful software

development efforts that would be invaluable if they could be

effectively reused.

2. Software Maintenance

Software maintenance has been previously described as

a critical phase of the software development life cycle that

accounts for more than two-thirds of the total life cycle

cost. While software reusability applications are useful

development tools in the earlier phases of the SDLC, it is

during the maintenance phase that the most significant

benefits can be gained. Since software maintenance

presupposes an existing, implemented program, by definition

all software maintenance reuses software to some degree.

There are three basic kinds of software maintenance:

correcting program flaws; upgrading programs with improved

capabilities; and translating programs into a new form.

Correcting post-implementation flaws remove problems that

detract from the program's basic functionality as defined in

the requirements analysis. The entire implemented program,

minus the flaws, is reused. There are no chanues in the

requirements or the operating environment. Upgrading a

15

program is adding functionality not addressed by the original

requirements analysis. There is no change to the operating

environment, but there is a change in the user requirements.

Adding functionality can be the simple inclusion of a new

routine with little impact on the rest of the program, but it

is more likely that an upgrade will require related changes

to other areas of the program. A wider range of software

reusability applications pertain in this case, including the

use of application generators to regenerate the program with

the new functionality and methodologies which reuse the

requirements or design phases. Software translation into a

new form is discussed in the next section.

3. Software Translation

Software translation is necessitated by changes in the

operating envirorQnent. Operating environment changes include

changing the language in which the program is written, the

operating system software, or the hardware. Unless the

affected program is going to be redeveloped from scratch in

the new environment, software reusability applications are an

essential tool of this type of maintenance. One type of

translation is the translation of a program from one high

level language to another. The reasons for translating a

program to another language vary. They include improving

16

efficiency, improving readability for maintenance, conforming

to new standards, and taking advantage of desired features in

a different language. It is not a prerequisite that the

targeted application be outdated, bug ridden, or otherwise

flawed for program translation to be viable, although these

reasons are often the impetus for consideration.

4. Summary and Purpose

Figure 2 summarizes the relationship between software

maintenance, reusability, and translation. Software

maintenance is the final phase of the software development

life cycle. Software maintenance receives particular

attention because of the disparate percentage of life cycle

costs associated with performing this phase. Software

reusability applications hold promise to reduce software

maintenance costs. In particular, software reusability

applications can be used to support software translations.

17

SOFTWARE MAINTENANCE
SOFTWARE CORRECTION

SOFTWARE UPGRADE

SOFTWARE TRANSLATION
MANUAL RE-IMPLEMENTATION

S/W REUSABILITY
APPLICATIONS

-COMMERCIAL PACKAGES

CODE FRAGMENTS

APPLICATION GENERATORS

-- REQUIREMENTS ANALYSIS

LDESIGN SPECIFICATIONS

Figure 2 - Relationships

18

The purpose of this thesis is to investigate software

reusability applications and the practical utilization of

those applications in the performance of software maintenance.

Of particular interest is the use of the design specifications

phase of the SDLC as the primary vehicle for reuse. The

software translation of a previously developed microcomputer

program from one high level language to another was chosen for

the case study.

Of critical importance in the reuse of early SDLC

phases is the thoroughness of requirements and design

documentation support. Without thorough documentation to

support the application's further development, software

maintenance is too hard. Unsupported software stagnates into

uselessness, necessitating a costly new development effort.

Software maintainers desiring to use software reusability

applications have been frustrated by a lack of documentation

support. They have frequently found that the necessary

documentation does not exist, the personnel who developed the

program are no longer available for interview or familiar with

the application, and that little information remains

pertaining to the development life cycle but the source code.

In light of these observations, proponents of software

reusability as a maintenance tool must also address the issue

19

of how to understand the software desired for reuse and

document that understanding in a manner that supports its

reusability.

B. DESCRIPTION OF THE APPLICATION

1. Application Sponsor and Customers

The Defense Systems Management College (DSMC) trains

military acquisition managers. Sources of students include

Department of Defense program management office personnel and

numerous other government and civilian organizations in the

defense acquisition community. DSMC focuses its training

efforts on education and research relating to program

management, systems acquisition, and defense acquisition

management. Program managers of major defense systems are

required by Congress to attend DSMC. Customers of the parent

application come from the organizations of alumni of the

College.

2. Description of the Parent Application

The Program Manager's Support System (PMSS) was

developed by contracted software developers under the guidance

of DSMC to assist defense system program managers in

acquisition program management. The primary goal of the PMSS

is to improve the decision-making process for its users. The

application was developed using both a top-down and bottom -

20

up approach. Top-down development includes development of the

PMSS integrated environment and addressing issues of data

compatibility and module linkage. Bottom-up development

proceeded simultaneously with the development of a series of

unconnected, independent modules. These modules were

developed with no standardization of data format or source

code language. Consequently, modules were coded in various

software languages, including PASCAL, BASIC, and C. Data

formats ranci from in-house designed data bases to the use of

off-the-shelf data management software.

Faced with the growing incompatibility of the two

development approaches, DSMC made the decision to reconcile

the two approaches by standardizing the modules and completing

development of an interface linking all of the modules into

an integrated environment. DSMC also wanted future

compatibility with the UNIX operating system, and so selected

C as the common software language for the modules. The PMSS

interface was written in C and is functionally capable of

linking PMSS modules independently written in C without

further modification of the module. A standardized data

format has not been formally addressed but is presently under

consideration.

21

The PMSS is composed of twenty-one modules which have

reached at least the prototype stage, and ten more modules in

development or being planned. The functions of these modules

fall into one of seven categories: program overview/status,

program impact advisor, functional analysis/support,

information category data, independent modules, executive

support, and utilities. The category of independent modules

include all PMSS modules which have not been integrated. The

Government Activity Tasking module is an independent module

that has been chosen as the target application for

translation.

3. The Government Activity Tasking (GAT) Module

The phrase "Government Activity Tasking" refers to

procedures for providing funding from one government agency

to another government agency for the performance of specified

project tasks. The purpose of the GAT module is to provide

the capability to track and manage project milestones (tasks)

and funds assigned to other agencies. It is intended as an

executive or senior-level manager module. [Ref. 6]

22

a. Technical Description

(1) Hardware. The GAT module was programmed to run

on the Zenith-248 microcomputer. It requires a minimum of 384

kilobytes of random access memory (RAM) and one floppy disk

drive. The module was designed for use with an Expanded

Graphics Adapter (EGA) graphics hardware card with a color

monitor; the use of the module with other graphics adapters

or a monochrome monitor is not guaranteed. An Epson

compatible printer is required to print reports.

(2) Software. The GAT module was written in PASCAL

and compiled on the Borland Turbo PASCAL compiler, version

3.0. The program is broken into four chain files called in

as overlays during program execution. The purpose of breaking

the program into smaller sections was to keep the size of each

program segment below 64 kilobytes, the maximum size limit of

a PASCAL program written for the version 3.0 Borland compiler.

All database support for the GAT module is provided by an off-

the-shelf software product called BTRIEVE by SoftCraft Inc.

BTRIEVE is executed as a RAM-resident utility program which

is called by the GAT module whenever access to the database

is required. BTRIEVE is automatically invoked when the GAT

module is executed and is transparent to the user. In

23

addition to the database managed by BTRIEVE, there are program

generated files which contain the information on report

formats created by the report generator.

(3) Interfaces and Communications. Although the

GAT module is one of many modules that make up PMSS, there is

no data sharing or other communication with PMSS or any other

automated system. All data used by the program is manually

entered by the user. There is no requirement for a

standardized database design or standard report formats.

There is no requirement to provide, at the module level, any

interface or link with the integrated PMSS environment.

The single interface concern is between the GAT

module source code and the supporting BTRIEVE database

manager. This interface is clearly defined in the BTRIEVE

manual and can support the translation of the source code to

C.

b. Users

The GAT module is not an operational module and is

not provided as part of the integrated PMSS package. The GAT

module is provided on request to defense acquisition

activities desiring to beta test the module. The number of

current users is unknown.

24

c. Functionality

The GAT module maintains a database of tasking

information which is keyed by a task number provided by the

user. When a new task number is added, all information about

that task is entered on the keyboard by the user. Task

information may be edited and tasks deleted whenever required.

Program commands are executed primarily by the use of function

keys. Most function key commands are listed in a menu which

appears across the bottom of each screen. Data about each

task are displayed on a three screen worksheet. The user can

print a summary report of task information, single screens of

the task worksheet, or the entire task worksheet using

function commands. Additionally, a report generator is

provided for developing and printing reports. The report

generator allows the user to select which data elements of the

task will be included in the report. The created report

heading can be saved as a report format and the information

requested can be printed for all tasks in the database.

25

111. UNDZRSTANDING THE SOFTWARE

A. INFORMATION SOURCES

Software that is not understood cannot be maintained.

Software maintainers commonly have little background or

experience with the majority of programs they are tasked with

maintaining. It is imperative that software maintainers

acquire detailed information about the target program. Every

source of information available must be examined in detail.

SDLC documentation is a very important source of information,

but the maintainer must exercise extreme care in reviewing

this material. The maintainer must determine how closely the

documentation reflects the actual program and identify those

portions of the documentation that are no longer accurate.

Programmer manuals and user's manual, if available, should be

studied with a certain degree of skepticism. It is unusual

for the manuals to be updated when changes and modifications

are made to the program, and it is common practice for the

manuals to be created after program completion with marginal

regard for their accuracy. Program source code is also a good

source of information, provided the source cde listing

available for use correctly represents the executable program.

26

If possible, the source code listing should come directly from

the source code used to compile the program; any other program

listing may not reflect undocumented changes made to the

executable program. Other documentation that can resolve

confusion or help make cryptic code more understandable is

user operations documentation. User operations documentation

consists of all regulations, instructions, and policies of

program users that pertain to the target program. This is

particularly true if the requirements documentation is not

accurate or non-existent. User operations documentation

normally provides much of the information the original

programmers used in the requirements analysis.

Documentation is not the only source of information about

a program. If available for interview, the original

programmers and program users can provide important

information. The maintainer should not expect the original

programmers to remember details about the program. Typically

a significant amount of time has passed since the programmers

were directly involved with the target program, and it is

unlikely that the programmers can answer detailed questions

about specific lines of code. However, questions about the

general structure of the program and why certain decisions

about that structure were made can be very revealing. Program

27

users can add information to support the available

documentation. In cases where there are no requirements

documentation or supporting user operations documentation,

program user interviews may be the only way to ascertain the

baseline guidance for the original development of the program.

In summary, the software maintainer should consider the

following sources (compiled from articles by Phillips [Ref. 7]

and Fay [Ref. 8]) when collecting information in preparation

for doing software maintenance on an unfamiliar program:

" SDLC documentation

" Program source code

" User regulations, policies, and instructions

" Programmer manuals and user's guide

" Source code programmer interviews

* Program user interviews

The succeeding sections address the sources of information

explored in developing an understanding of the GAT module.

1. Available Documentation

The documentation available on the GAT module is very

poor which, as previously discussed, is typical of most

applications. The GAT module program documentation consists

of a source code listing and a user's manual. The source code

listing is available both as a hard copy list and on diskette

28

as compilable source code. The availability of the source

code on disk guaranteed that the source code matched the

executable program. The executable program was produced by

compiling the source code. A new listing was printed from

this same code to ensure that all source code information

accurately reflects the executable program. The user's manual

is a better than average product which effectively teaches the

user the operation of each program option. The user's manual

is straightforward and simple to use. Problems with the

manual were minor, such as inaccurate information on the use

of some keyboard keys and the lack of an index or a summary

of available functions.

User operations documentation is non-existent. The

requirements for the original program were collected by

interviewing potential users. No record of these interviews

exist.

Other documentation that is not available for the GAT

module is the programmer's manual and any documentation

relating to the SDLC of the program. Requirements analysis

documentation and design specifications were not created when

the program was developed, and there is no documented record

of any subsequent changes made.

29

2. User's and Programmers

No GAT module users were available for interview. The

programmers for the contracted software development

organization which developed the GAT module were queried for

general information on the development of the module.

Conversations with the organization revealed the lack of

documented support for the module and the dependance on third

party software to generate much of the code. No major

insights on the development were revealed and, as expected,

little detailed information could be provided.

B. PROGRAMMER AIDS

Programmer aids refer to the software tools and analysis

methodology used by the maintainer to understand and translate

the GAT module. Fundamental tools which comprise every

programmer's basic toolbox, such as a computer, a program

editor, and a compiler, are not addressed. Instead, emphasis

is given to tools which specifically aid in deciphering source

code and translating between high level languages.

1. Automated Tools

Two software tools were used to increase the

maintainer's understanding of the source code. One software

tool, Tree Diagrammer by Powerline Software, prov:ided the

translator with detailed information about each procedure and

30

function (also referred to as "routines") defined and used in

the program. The second tool, Source Print, also by Powerline

Software, provided a comprehensive listing of all variables

used.

Two software products were used to manage data and

generate code for the GAT module by the original software

developers. One software tool, Softcode by The Software

Bottling Company, is an application generator which produces

code for screen layout. The other software tool, BTRIEVE by

Novell, is a RAM resident utility which provides data base

management functions. Learning to use these tools was

necessary to gain an understanding of their role in the

development and execution of the program.

a. Deciphering Source Code

The maintainer initially attempted to define the

logical control flow of the program by manually studying the

source code and making lists of routines and variables. This

method was lengthy, tedious, and resulted in many errors.

Tree Diagrammer was then used. Tree Diagranamer thoroughly

mapped all calling routines in graphical format, clearly

described dependencies and flagged anomalies. The level of

nesting of other routines within each routine were also

defined. Tree Diagrammer proved useful because it pulled

31

essential data out of the source code and presented that data

in an effective format. This information facilitated

understanding the control flow of the program. Source Print

aided the development of the data dictionary by providing a

listing reporting the name and location used of every

variable.

The use of software tools such as Tree Diagrammer

and Source Print is not a panacea for the understanding of

undocumented source code. These tools automate certain

processes that the maintainer must otherwise accomplish

manually when preparing information needed to understand the

source code. Automated tools save valuable time. It is still

up to the maintainer to interpret and clarify the information

generated into a clear picture of the program processes.

b. Automated Source Code Translation

Two automated translators were experimented with.

Specific information on the features of the automated

translators are discussed in Chapter IV.

2. Structured Systems Design

Structured systems design [Ref. 5] is a well

established methodology introduced to improve the development

of reliable and maintainable software systems. It is a

methodology created specifically for software systems

32

development, and is the heart of the manual re-implementation

methodology described in Chapter IV. The disciplined approach

of structured design also served to provide a good framework

in advancing the maintainer's understanding of the GAT module.

Structured design components such as structure charts,

pseudocode, entity-relationship diagrams, and data

dictionaries were used to represent the information gained

from studying routines and variables. The construction of

these components completed the source code analysis.

C. PROGRAM DZTAILS

1. Structure

Program structure defines the composition of the

program by modules. Modules are discrete blocks of code for

which the inputs, outputs, and functionality can be described.

Modules are made up of other modules in a chain that begins

with the program as a whole and ends with simple modules which

cannot be further divided. The division of a program into a

modular structure and the relationship between modules is

called partitioning and hierarchical organization [Ref. 5].

The GAT module is constructed using overlays. The

purpose of overlays is to allow the creation of programs

larger than the maximum that can be accommodated in computer

memory. The overlay procedure is complicated to execute, but

33

simple to explain. Program routines are collected together

into subprograms. Routines within a subprogram cannot call

another routine in a different subprogram, because only one

subprogram can be present in memory at a time. The GAT module

has a main program and four subprograms. The main program is

always present, and it ensures the appropriate subprogram is

available in memory when required. Ideally, subprograms are

functionally self-sufficient and do not require any of the

routines needed by other subprograms. In the GAT module,

however, several routines are needed by all the subprograms.

This need is accommodated by duplicating the desired routines

in every subprogram that requires the routines. The end

result is effective but inefficient. The GAT module runs

successfully and stays within the memory limits imposed by the

Borland PASCAL compiler, but wastefully duplicates code and

increases disk size.

Learning the structure of the program was accomplished

using the following steps:

Step 1: Define the overall function of the Program. This
module is the top level module of the structure chart.
"Track Tasks" was defined as the overall function of the GAT
module.

Step 2: Describe obvious, high level functions as modules.
Ask the question "What does this do?" of user decision
points in the program. Menu items and function key
selections are the best clues to use to gain a general idea
of the main functions of the program.

34

Step 3: Describe the next level of functionality within
modules identified in Step 2. Follow the same thought
process as in Step 2. Repeat this step with subsequent
module levels until the function of the module can no longer
be divided without reference to specific routines.

Step 4: Define the function of each program routine. These
routines are the lowest level modules. Strongly structured
programs have readily definable routines which perform a
single function. This is called cohesion [Ref. 5]. Most
programs, however, contain routines that have multiple
functionality or have no clearly definable function at all.
Define all functions performed by a routine and note
routines that cannot be clearly defined.

Step 5: Cross reference modules defined in Step 4 with the
lowest level modules described in Step 3. Look at the
function of each Step 3 module and determine which modules
from Step 4 are required to perform that module. Step 4
modules can be used with as many Step 3 modules as required.
Multiple function modules should be included even when some
functions are not applicable.

Step 6: Correct module cohesion problems. Review the cross
reference created in Step 5. Break routines that perform
multiple functions into separate, cohesive modules.
Eliminate undefinable routines by absorbing their functions
into related modules. Revise the cross reference to reflect
changes.

2. Control Flow

Control flow is the order in which modules are

executed, and is represented by the hierarchical arrangement

of the modules. Control flow in the GAT module was traced by

studying program execution and manually walking through the

source code. It is not required that control flow be

represented in the structure chart. For this case study,

35

however, control flow is defined in the structure chart and

was determined concurrently with understanding program

structure. The following steps were performed concurrently

with the same step number used to determine structure above.

Step 3: Bond related modules together by order of execution.
Define the order in which modules at the same level are
executed.

Step 4: Define the order in which routines are executed and
dependencies between routines.

Step 6: Correct module couplinQ problems. Coupling is the
degree of interdependence between modules [Ref. 5]. Low
coupling is desirable because modules should be independent
of each other. The following should be considered: modules
should not branch into the inside of another module and
modules should not alter the statements of other modules.

Step 7: Develop the initial structure chart. Show the
modules and the connections between the modules. Do not
include the data communicated between modules at this point.

3. Variables

Variables are names used to refer to stored data. The

data stored may be a single element or composite data made up

of more than one component. Information about a variable

includes its definition, components, the elements which make

up the components, and its physical format. Variable

information is displayed in the data dictionary.

36

The steps performed to determine variable information

are:

Step 1: List all variables used in the ProQram. The utility
programz Source Print was used to create tie list.

Step 2: Determine variables with composite data. Identify
the components and elements which make up the composite
data.

Step 3: Describe each variables' Phvsical format. Physical
format is a description of the values that a variable may
take on, the number of characters allowed, and the type of
characters allowed. This information is available in the
declaration statement of the variable.

Step 4: Determine where variable values are assiQned and
used. Add to module descriptions a list of variables used
and variables changed by each module. Variablea used by a
module, unless created within the module, are the module's
inputs. Variables changed by a module and subsequently used
by other modules are the module's output.

Step 5: Update the structure chart. Show communication
between modules by tagging module connections with the
variables input and output between modules.

Step 6: Correct module coupling problems. Review the
variables being passed between modules. The following
should be considered: pass only variables essential to the
module; minimize the use of global variables which are not
passed; and minimize passing composite data if little of the
data is actually used. Revise the structure chart.

4. Input Sources

Input sources provide data not initialized or

calculated by the program. Input sources for the GAT module

are user input from the keyboard, database files, and report

format files. Modules on the structure chart representing the

37

retrieval of this data are not as detailed as otiLer modules

because they use routines external to the program.

5. Output Destinations

Output destinations receive data for storage or

display. Output destinations for the GAT module are the

monitor screen, printer, and disk drive. Modules on the

structure chart representing this data are not as detailed as

other modules because they use routines external to the

program.

D. APPLICATION INCONSISTENCIES AND RECOMMENDATIONS

Application inconsistencies noted in this section are the

result of a review of the program strictly from a user

friendliness and consistency of design point of view. The

decision to implement any or all of the following

recommendations is based on the consideration of which

requirement, the status quo or the recommended change, is most

consistent with the design strategy adopted and takes the best

advantage of the target language, C.

1. Screen Movement

The following inconsistencies in screen movement were

noted:

* Arrow keys are the primary method of moving the cursor to
different areas of the screen; however, on some screens
the up/down arrow combination is required and on other

38

screens the left/right arrow combination is required.
The reason for this is not logically evident.

* Similarly, the use of the PageUp/PageDown keys also vary
from screen to screen.

Recommendation: Develop a consistent design which allows

the use of all four arrow keys on every data entry screen.

Use the logical meaning of the PageUp/PageDown keys for paging

between worksheet screens.

2. Function Key Use

The following inconsistencies in function key use were

noted:

e The meaning of function keys (<F5> in particular) changes
depending on the screen.

* Function key <F9>, used to change screen color, does not
appear in the bottom line menu and only works at certain
places in program.

Recommendation: Develop a design that consistently

applies the same meaning to function keys. Design bottom line

menus which display all enabled function keys. Add the <ESC>

key to the menu for incremental backtracking to the main menu.

3. Report Generator

The following inconsistencies in the report generator

were noted:

* The form generation routine assumes that 120 column print
is always used, requiring the user to do manual
calculations to accommodate other sizes.

39

" The size of individual data items can only be displayed
one at a time, complicating the process of creating a
report heading.

* The <return> key is used to transfer a selected data
heading tc t:e report generator, but this is not shown in
the menu.

" A predefined report format filename must always be
manually entered even though a list of predefined report
formats can be displayed.

Recommendation: Completely redesign the report generator

to correct the above inconsistencies. This redesign is a

significant departure from the original program and may not

be applicable to this translation effort.

4. Other

The following remaining general inconsistencies were

noted:

" Users are arbitrarily constrained to a limited number of
lines describing the task.

" Saving changes to the task worksheet can be done only when
quitting the program.

Recommendation: Develop a design to allow unlimited

(except by available memory) descriptions and include a save

option in the bottom line menu which can be executed during

add or edit operations.

40

IV. SOFTWARE TRANSLATION METHODOLOGIZS

A. OVERVIEW

The software translation methodologies discussed in this

chapter consist of four software reusability applications and

one SDLC implementation. Each methodology is described in

terms of purpose, functionality, complexity, and applicability

to the case study.

An important aspect in determining the translation

methodology which best fits the case study is the degree of

commonality of the source and target language. Languages are

developed with certain strengths and weaknesses. Languages

support specifically defined sets of functions that may be

similar to another language or may be totally unique. It is

the dissimilarities between languages that complicates the

translation process. If two languages supported all the same

functions in exactly the same way, then translation would be

a straightforward process readily managed by an automated

translator. Two languages developed with completely

incompatible and unique functions may not be translatable by

anything short of manual re-implementation.

41

The programming languages PASCAL and C lie between the two

extremes. There are many similarities and some fundamental

differeaces which must be considered in establishing a

translation methodology. Prior to describing the translation

methodologies considered, a comparison is made between PASCAL

and C.

B. COMPARISON OF C AND PASCAL

The first determination to be made in making comparisons

between two programming languages is what to compare. Both

PASCAL and C have numerous compilers with varying

functionality. Both languages have more than one widely

popular "standard" definition. The standard definitions for

PASCAL are the Wirth definition and the Borland Turbo

definition [Ref. 12]. Niklaus Wirth developed the original

PASCAL language [Ref. 9]. The Borland definition is an

extension of the Wirth definition and is the compiler of

choice for many microcomputer users. The standard definitions

for C are the Kernighan and Ritchie definition and the

American National Standards Institute (ANSI) definition

[Ref. 10]. C was developed by Dennis Ritchie [Ref. 11]. The

American National Standards Institute promotes a standard

definition, ANSI C. ANSI C is an extension of the Kernighan

42

and Ritchie definition. The Kernighan and Ritchie definition

is used on the UNIX operating system.

For this case study the source program was written in

Borland Turbo PASCAL and the target program was written in

Microsoft C. Microsoft C supports both the Kernighan and

Ritchie and ANSI C standard definitions. The language

comparison will be based on the extended standards of Borland

Turbo PASCAL and ANSI C.

A second issue is the C standard function library. This

library includes additional functions, primarily for

input/output operations, that are not part of the standard

definiticn of C. Since this library is always included with

C compilers, the functionality provided by the library was

included in the comparison.

The two languages are compared in the following three

categories: the history and purpose of development; comparison

of features; and suitability for the case study.

1. Purpose and Goal of the Languages

C was designed in 1972 by Dennis Ritchie [Ref. 11] for

the following reasons:

e To provide a computing language implementable on small
machines.

* To be used to implement operating systems and language
processors.

43

* To provide programmers with an efficient interface to
computer hardware.

PASCAL was designed by Niklaus Wirth in 1969 [Ref. 9]

for the following reasons:

" To provide a systematic and precise expression of
programming concepts, structures, and development.

" To demonstrate that flexible language facilities can be
implemented efficiently.

* To provide a good vehicle to teach programming by the
inclusion of extensive error checking facilities.

"The design goals of PASCAL and C were quite different.
PASCAL's restrictions were intended to encourage the
development of reliable programs by enforcing a
disciplined structure. By strongly enforcing these
restrictions, PASCAL helps the programmer detect
programming errors and makes it difficult for a program,
either by accident or design, to access memory areas
outside its date area.

In contrast, C's permissiveness was intended to allow a
wide range of applicability. The basic language has been
kept small by omitting features such as input/output and
string processing. Ideally, C was to be sufficiently
flexible so that these facilities could be built as
needed. In practice this phi2osophy has worked well."

[Ref. 12]

A prominent difference in the two languages is their

treatment of variable types. PASCAL is a strongly typed

language. C is not. Strongly typed languages mandate that

a variable can belong to only one type and that type

conversion is accomplished by converting a variable value li.,n

one type to another. PASCAL limits type conversions to

44

explicitly called routines and mixed-mode expressions

containing integer and real variables. C does not always

require that variables be checked for type compatibility.

For example, the language definition does not require that the

types of actual and formal parameters be checked for

compatibility. Strongly typed languages such as PASCAL

improve program clarity and reliability. Loosely typed

languages such as C encourage and support programmer

flexibility. [Ref. 12]

2. Comparison of Features

This section addresses the main differences in the two

languages [Ref. 12]. The purpose of this section is to

highlight areas of concern for software translation. It is

assumed the reader has a basic familiarity with programming

language concepts and the features of the two languages. A

complete description of the languages is not intended.

a. Data Types

PASCAL data types provide security from errors,

readability, and reliability primarily attributable to

consistency checking not required by C. C data types allow

addressing physical memory locations, multiple precision

arithmetic, no restrictions on where pointers caTn point,

45

address arithmetic, and few restrictions on manipulating

arrays.

b. Statements

The C and PASCAL languages use the semi-colon in

a slightly different manner. In C the semi-colon is used as

a statement terminator. In PASCAL the semi-colon is used as

a statement separator. The PASCAL method is more error prone

because there are more conditions that determine when the

semi-colon should be used than in C.

Control statements are functionally very similar.

One exception is the switch (C) and case (PASCAL) statements.

In C, the switch statement executes multiple alternatives in

the order they appear unless an explicit transfer of control

is given. In PASCAL, only one alternative is executed in the

case statement. Another difference is that PASCAL has no

controlled transfer statements in PASCAL such as break and

continue. The lack of some analogous statements between the

two languages complicates translation. The PASCAL repeat loop

can be simulated in C using other constructs. The C

controlled transfer statements break and continue can be

simulated in PASCAL. However, the simulated constructs are

not as efficient as their counterparts and make the program

more difficult to understand.

46

c. Program Structure

There are significant differences in the structure

of the two languages. PASCAL is a block structured,

hierarchical language which supports the nesting of routines

within other routines. C is considerably less structured to

maximize programmer flexibility. Program structure

differences are summarized as follows:

" Order of Appearance. PASCAL requires a strict order of
appearance of the different parts of the program. For
example, the main body of a PASCAL program must be at the
end of the program. This ordering helps ensure one-pass
compilation of the program but reduces program
readability. In C, order of appearance is much more
flexible.

* Variable Visibility. C provides very flexible methods of
expanding or restricting the scope of variables,
encouraging the use of shared private variables to improve
reliability. PASCAL requires the use of non-local
variables or strict parameter passing to get information
between routines.

* Passing Parameters. In PASCAL, parameters can be passed
between routines by either value or reference. C
parameters can be passed only by value. In C, the address
of a variable must be passed to achieve the same effect
as passing by reference. PASCAL requires that the number
of variables passed equal the number of variables expected
by the called routine. C does not check that the number
of actual parameters equals the number of formal
parameters expected by the called routine.

" Entry and Exit Points. PASCAL routines must be entered
and exited from the beginning of the routine and its end,
respectively. In C, specific control statements such as
break and continue allow entry and exit from arbitrary
places within a control structure.

47

* External Routines and Variables. C allows the use of
external routines and variables, encouraging the
development of libraries of routines. The version of
PASCAL used in the case study does not support external
routines or variables.

C. METHODOLOGIZS RZVIZWED

1. Inverse Transformation

The inverse transformation methodology described by

Sneed [Ref. 13] is based on the strategy of reversing the

normal software d3velopment cycle. Software is viewed at

three levels which are an abstraction of the output of the

structured analysis and design methodology. Abstraction

Levels are physical, logical, and conceptual [Ref. 13] and

correspond to the source code, design specification, and

requirements statement of structured analysis and design.

There are two steps in the process. The first step

applies reverse engineering techniques to retranslate the

source code into an intermediate design schema. The result

of the retranslation is design documentation based on the

intermediate design schema. The second step applies standard

software engineering principles to translate the intermediate

design schema into a system specification.

The objective of the inverse transformation

methodology is the creation of the requirements statement.

48

Proponents of reverse engineering claim that viewing the

software at this conceptual level improves software

maintenance and reusability [Ref. 13]. Inverse transformation

is not the same as software restructuring. Software

restructuring is used to reduce maintenance costs by

converting unstructured programs into structured programs

[Ref. 131. The application of software restructuring does not

require the recreation of the requirements statement or design

specification. The extent of restructuring done as part of

the inverse transformation process is dependent on the rigor

in which the original development was conducted. Poorly

designed and unstructured programs require more restructuring

than well designed programs.

Defining the transformation rules required to accomplish

the first step in the inverse transformation methodology is

dependant on ",... the structure of the programming language

as input and the structure of the design schema as output.... "

[Ref. 13] In other words, the translator starts with the

software language of the source code, defines the design

schema to be used, and then determines the transformation

rules.

Transformation rules are built by inverting the

process of generating code from design documentation. For

49

example, if the design schema defined by the translator

requires relational tables to describe a database, then

relational tables should be created from any database

described in the source code. The specific process to

accomplish the first step transformation is left to the

translator.

In the second step, the translator takes the design

documentation from the first step and creates the system

specification based on the Entity/Relationship (E/R) model.

E/R models are described by Whitten [Ref. 4]. Two levels of

abstraction are defined by the inverse transformation

methodology, micro and macro, which represent the two levels

of detail required in the E/R model. These levels are further

broken down into a number of more specific specification

levels defined as entities, structures, and relationships.

The purpose of this breakdown is to reach a level of detail

comparable to that of the design schema. Once this is

accomplished, the translator links design elements and

specification elements together into a set of assignment

criteria that guide the retranslation from the design schema

to the system specification.

The end result is a system specification that is an

exact, conceptual representation of the original source code.

50

The system specification serves as the baseline for system

maintenance and module reuse.

2. Transformation Based Maintenance Model

The Transformation-based Maintenance Model (TMM) is a

methodology that allows "... practitioners to recover

abstractions and design decisions that were made during

implementation." [Ref. 14] TMM relies on the use of a

prototype tool called Draco.

The Draco paradigm is based on the idea of a domain-

specific "super" language that would map onto a real software

language. Draco provides the methodology to abstract language

dependant design decisions into a more generic form

represented by nodes on a graph. Design decisions that are

dependant on prior design decisions are linked together, and

alternate methods of achieving the same design decision are

shown as alternate paths on the graph. This graph, called a

Directed Acyclic Graph (DAG), becomes the basis for the system

specification.

There are a number of prerequisites to using TMM. The

most significant and restrictive prerequisite is that the

system specification must be derived from the Draco paradigm.

If a Draco derived system specification is not available, it

must be developed before TMM can be employed. Since few

51

programs have been developed using the Draco paradigm, the

process of employing TMM must include steps to produce the

needed Draco specification. If the assumption is made that

the translator does not have a Draco derived system

specification, the following outlines the steps to applying

TMM:

Step 1: BeQin the abstraction recovery.

Step 1A: Propose abstractions from the source code.

Step 1B: Choose the most suitable abstractions.

Step 1C: Construct the specification from the chosen
abstractions.

Step 2: Create the Directed Acyclic Graph (DAG).

Step 3: Identify the Least Common Abstraction (LCA).

Step 3A: Ide..ntify code that contributes to the undesired
design.

Step 3B: Reverse undesired desian decisions.

Step 3C: Collect undesired code into a sinqle component.

Step 3D: Re-implement the undesired component.

Step 4: Choose the new desired path on the DAG.

Abstraction recovery is comparable to the first step

in the inverse transformation methodology (retranslating

source code into an intermediate design schema) previously

discussed. The product of abstraction recovery is the Draco

52

specification which supports the creation of the DAG and the

identification of the LCA.

In the DAG, the top node, or root node, represents the

original specification, and subsequent nodes represent correct

but partial design decisions of the specification. The DAG

traces possible design decisions, beginning at the root and

ending when the last design decision is made. The translator

uses the DAG as a translation tool by searching backward up

the nodes of the DAG toward the root until a node which

encompasses both the original implementation and the desired

implementation is found. This node is the LCA. The LCA

becomes the new starting point on the DAG to trace the path

to the desired implementation. As the translator traces the

path to the LCA, he reverses the design decision at each node

and identifies undesired portions of the original

implementation. The translator collects the undesired

portions together as a single component for re-implementation,

and traces a new path on the DAG from the LCA to the desired

implementation.

3. Attribute Grammar Technology

The use of grammars to describe high-level programming

languages is an established instrument of programming languaqe

theory and shows promise as a tool for source-to-source

53

language translation. Attribute grammar technology is an

extension of grammar based methodologies. A synopsis of

commonly used terminology (Ref. 15] is provided below to

support the discussion.

Grammars: Grammars formally specify the syntax of the
language with a set of rules describing the set of all
statements that are legal and correct in the language. A
grammar imparts no meaning to the constructs it describes,
only what is syntactically legal.

Statement: A statement is a source code fragment. For
example, the PASCAL fragment in brackets [C := A + B;] is
a statement. A statement is comprised of a sequence of
tokens.

Tokens: A token is a string of characters that make up a
portion of a statement. Tokens are normally keywords,
arithmetic operators, variable names, etc.

ParsinQ: Parsing is the process of analyzing a sequence of
tokens and identifying the sequence with the correct
language construct described by the grammar.

Productions: Productions are the rules of grammar used when
parsing to describe all the statements of the language.

Parse Tree: A parse tree is a graphical representation of
the grammar of the language and is used in the analysis of
a program or any portion of a program (such as a statement)
See Figure 3.

54

Sentence to be Analyzed
THE CAPTAIN COMMANDS THE SHIP.

Parse Tree

sentence
-------------- I----------
I I

subject predicate
---- --------------IiIII

article noun verb direct-object
II I i--

iIII I
i I article noun

I I I I i
THE CAPTAIN COMMANDS THE SHIP

Grammar

sentence = subject predicate (root node)
subject article noun (nonterminal)
predicate verb direct-object (nonterminal)
direct-object article noun (nonterminal)
article THE (terminal)
noun . = CAPTAIN (terminal)
noun = SHIP (terminal)
verb COMMANDS (terminal)

Explanation

1. The [::-] symbol means that the items to the right of the symbol are
subnodes of the item on the left of the symbol.
2. The grammar is the set of rules which specify for each nonterminal the
kind and number of subnodes attached and the order they appear.
3. Grammar rules (productions) and the parse tree can be used two ways.
First, all possible ways to devise a sentence can be traced. There are four
possible sentences:

THE CAPTAIN COMMANDS THE SHIP
THE CAPTAIN COMMANDS THE CAPTAIN
THE SHIP COMANDS THE CAPTAIN
THE SHIP COMMANDS THE SHIP

Second, a given sentence can be che::kei t, determine if i' i-
possible sentences. This analysis is called parsing.

Figure 3 - Example of a Parse Tree

55

Context-free grammar: A context-free grammar does not take
context into account in its set of rules. A statement in
a program is parsed based only on the sequence of tokens
that describe the statement, and does not take into account
any information from the parsing of previous statements.

Context-sensitive grammar: A context-sensitive grammar
considers the fact that prior statements already parsed may
have an effect on the validity of subsequent statements and
in the way subsequent statements are parsed. Context-
sensitive grammars are more complex than context-free
grammars because of the need to have access to information
about prior statements.

Attribute grammar: An attribute grammar is an extension of
a context-free grammar and formally specifies context-
sensitive rules.

Attributes: Attributes are context-sensitive rules of
grammar. Attributes are directly associated with
productions and are expressed in the form of conditions
which must be evaluated.

Attribute values: Attribute values are determined by
evaluating attributes and associated productions.

A simple example illustrates the application of

attribute grammar technology. The following are two

statements in a PASCAL program. Statement #1 is a variable

declaration and statement #2 uses the variable declared in an

assignment statement.

statement #1: X char;

statement #2: X := 1;

Assume that only a context-free grammar is available

to analyze the two statements. Statement #1 is first scanned

56

and parsed into tokens. A sequence of four tokens is

recognized: variable name [X], operator (:], keyword (char],

and operator (;]. The analysis of this sequence of tokens

determines that the statement, with respect to the grammar,

is legal. The same is done with statement #2, without taking

into account the first statement already analyzed. Statement

#2 is also determined to be legal. However, compiling these

two statements with a PASCAL compiler would cause statement

#2 to be flagged as an error. Variable X was declared to be

of type char (character), but was assigned an integer value,

which is illegal in PASCAL.

How did the compiler recognize the error? This is a

context-sensitivity issue. Using attribute grammar

technology, attributes are inserted into the grammar which

cause additional analysis of the sequence of tokens. The

analysis then includes steps that recognize statement #1 as

a variable declaration, checks a symbol table, and returns a

value that indicates if X has been previously declared. In

statement #1 X has not yet been used; variable X is added to

the symbol table and statement #1 is accepted as a legal

construct. When statement #2 is analyzed it is recognized as

an integer assignment. Evaluation steps are performed which

checks the symbol table and returns a value indicating

57

variable X is defined, but not as an integer as required by

the attribute grammar. Statement #2 is flagged as an error.

The important difference is that in order for statement #2 to

be evaluated properly, prior knowledge about statement #1 was

necessary.

An attribute grammar will not work with a language for

which it was not specifically constructed. Revising the above

example, the same two statements are written in C as follows:

statement #1: char X;

statement #2: X = 1;

Although the string of characters are largely the

same, the PASCAL operator [:=] has been replaced by the C

equivalent operator [=] and the sequence of tokens has

changed. A different context-free grammar and attribute

grammar is necessary to describe the language. Using the same

chain of logic described above, statement #1 would be

recognized as legal and not statement #2 because of the type

mismatch. However, in C the type char is only another

representation of the type integer. In C integers can be

assigned to variables of type char without error. In reality,

both statements are legal in C. The attribute grammar must

reflect this properly.

58

An attribute grammar is very specific to the language

it describes. In order to use attribute grammars for language

translations, an intermediate language is needed to bridge the

differences in the languages. An attribute grammar is

developed which translates the source language to this

intermediate form, and another attribute grammar is developed

to translate the common intermediate form to the target

language.

The intermediate form is devised in one of two ways,

the greater common devisor method and the least common

multiple method. When using the greatest common devisor, the

translator attempts to create an intermediate form that

retains as much of the higher level functions of the two

languages as possible. In order to represent functions that

exist in one language and not the other, these high level

functions are rewritten as a series of lower level functions

that are common to both languages. This causes inefficiencies

and loss of program structure if not used carefully. The

greatest common divisor method works well with source

languages that are closely related, such as C and PASCAL. It

is less successful with languages in which the syntax is

disparate because many low level constructs aie ii-eied to

commonly represent the two languages. A second method, the

59

least common multiple method, addresses this issue by

requiring the development of attribute grammars for both the

high level function and its low level constructs for every

disparate function. Although the least common multiple method

minimizes translation inefficiencies in dissimilar languages,

there is a corresponding increase in the complexity and level

of effort required to develop the attribute grammars.

[Ref. 16]

There are some language constructs which cannot be

represented by attribute grammars. One example of Lhis is

complex pointer arithmetic commonly used in C. Such non-

representable constructs are flagged without translation. A

different translation methodology for these constructions is

necessary to complete the translation. [Ref. 16]

4. Manual Re-implementation

Manual re-implementation is the development of the

program as if no previous program existed. The full software

development life cycle is performed. The requirements

statement is generated from user defined requirements and a

study of the current environment. The source code of the

previous program and all implementation decisi'ns an,] othei

information arising from the development of the earlier

60

program is ignored. Based on the new requirements analysis,

the remaining steps of the SDLC are performed.

5. Automated Source Code Translation

Automated source code translators take the source code

of the original program as input and output source code for

the translated program. Automated translators are rated in

four areas:

" Effectiveness of syntactic conversion of like
functionality

" Degree to which unique functional differences are
addressed

* Efficiency in converting unique functions to similar
constructs

" Overall effectiveness of the translation

Automated translators vary in the degree in which

language differences are addressed. A minimally successful

automated translator must correctly convert all like functions

between the source and target language and should flag code

that the translator could not convert. For example,

converting the assignment statement in PASCAL to the

assignment statement in C requires changing the [:=] operator

to [=]. These simple translators are effective only between

very similar languages and on uncomplicated source programs.

For example, in C there is ar equivalent function to the

61

PASCAL repeat loop. The do.. .while loop in C can be directly

substituted by the automated translator whenever the repeat

loop is encountered. Other differences, such as Lhe inability

in C to pass parameters by reference, are much more difficult

to handle with an automated translator. Differences that are

not addressed should be flagged by the translator when such

code is encountered. For most functions there is more than

one alternate construct. The most efficient alternate

construct should be used. Finally, the overall effectiveness

of the translation is determined by the level of manual effort

necessary to get from the translated code to a compilable,

correctly running program.

Two automated translators were reviewed, the Turbo

PASCAL-To-QuickC Translator (TPQC) by Microsoft Corporation

and PTC by Holistic Technology AB. Both translators are

freely available on network bulletin boards. The advertised

features of each translator are discussed in the following

sections.

a. TPQC Features

TPQC converts Turbo PASCAL source code (version 3.0

or earlier) to C source code compilable on either Microsoft's

QuickC or C 5.0 Optimizing comp.lers. TPQC requires that the

source code be syntactically correct and that the source code

62

can be compiled and run successfully. The conditions below,

if present in the source code, can cause translation errors.

The PASCAL source code must be modified before executing TPQC.

" Set Declarations. C does not have set types. To prevent
memory allocation errors, remove set declarations from
loop statements.

" Nested Procedures. In some cases nested procedures must
be modified to prevent forward declaration errors.

" Reserved Words. PASCAL source code procedure and function
names that conflict with C reserved words, library-
function names, or macros must be changed.

" Forward References of Type. PASCAL pointers of undefined
types are assumed to point to PASCAL record types. If
this is not the case, the C output code must be modified.

* Case Statements. Case statements used to define variant
record structures cannot be translated.

" Compiler Directives. All compiler directives except $C
and $1 are ignored.

* External Procedures and Functions. External procedures
and functions are converted by placing a declaration of
the routine in the C program, but no linking occurs. The
function must be inserted manually.

* In-Line Machine Code. In-Line machine code is not
converted and the C code cannot be run until an
appropriate assembly-language function is written.

" Overlays. Overlays are ignored. [Ref. 17]

b. PTC Features

PTC was developed for use on the UNIX operating

system. Recompilation for use on the MS-DOS operating system

63

was necessary. PTC provides a self-test function to determine

if the recompilation was successful.

PTC is a generic translator which converts any

PASCAL program or code fragment into its equivalent in C.

When making decisions on multiple alternate constructs for a

PASCAL function, the PTC designers followed an interesting

philosophy. Instead of selecting the alternate construct

which maximizes the efficiency of the resulting C code, the

designers selected the alternate construct which most closely

complied with the requirements of the PASCAL standard (Ref.

18]. The resulting C code is less efficient and more

difficult to understand. The conditions below, if present in

the source code, can cause unexpected results. PTC does not

automatically flag potential problems. The conditions below

should be reviewed as possible sources of problems in

compiling or running the translated code.

" Record Variants. PTC uses a complex formula for
determining the size of memory to allocate for variant
records. The memory allocated may not be adequate.

" Pointers. A pointer defined recursively (e.g., type ptr
= ^ptr) cannot be translated.

" Procedure ScopinQ Rules. PASCAL scoping rules for nested
procedures are ignored. Nested procedures dependant on
PASCAL scoping rules must be modified. (Ref. 18]

64

D. COMPARISON AND SKLZCTION

Five software translation methodologies were reviewed.

Three of the methodologies were considered unsuitable for the

case study for reasons cited below. These methodologies were

the transformation based maintenance model, attribute grammar

technology, and manual re-implementation. The primary

methodology selected for use in this case study was inverse

transformation. Additionally, the automated source code

translators were used on selected portions of the case study.

The transformation based maintenance model (TMM) is a

complex methodology that requires a major investment in

development time. For small programs the development time of

the DAG alone can be expected to exceed the time required to

develop the program from scratch. For large programs,

capturing the information required from the source code to

employ TMM matches the complexity and level of effort required

to develop a compiler analyzer, and may not be worth such an

effort for one-time use. The major advantage predicted for

TMM is the possibility of using abstractions from the jAG

developed from one application for other program recovery

efforts. [Ref. 14] TMM is not suitable for one time

application on relatively small programs such as the case

study.

65

Attribute grammar technology also requires a significant

investment in development time. Grammars are required for

both the source and target languages. The intermediate

language bridging the differences in the two languages is also

required. The investment in development time is not the most

important drawback, however. Applying attribute grammar

technology as a software translation tool yields only

translated source code. This methodology does not generate

requirements or design documentation as output because neither

are required as input. For this case study, the creation of

this documentation is essential to support future maintenance

efforts.

Automated source code translators translate directly from

source code to source code without reference to life cycle

documentation. The translation problems, such as those noted

previously with the two specific automated translators

reviewed, illustrate further disadvantages. Automated source

code translators are unsuitable as the primary methodology but

are potentially valuable to speed the coding of certain

portions of the source code.

The inverse transformation methodology is the only

methodology reviewed that supports the evolution of life cycle

documentation and permits unrestricted determination of the

66

design development strategy. The inverse transformation

methodology uses the SDLC as the model for the software

translation. The output of this methodology includes both the

translated source code and life cycle documentation to support

future maintenance.

The methodology selected for the case study was the

inverse transformation methodology. Within the framework of

this methodology, automated source code translators were also

used on portions of the source code as part of the design

strategy. Details of the design strategy employed are in

Chapter V.

67

V. DESIGN STRATEGY AND TRANSLATION APPROACH

A. OVERVIEW

This chapter describes the specific approach taken to

develop the design strategy used with the inverse

transformation methodology. The design schema selected was

structured analysis and design. Step one of the inverse

transformation methodology was the creation of the design

specification. The structured analysis and design tools used

to create the design specification were structure charts, data

dictionary, and structured English constructs. The second

step in the inverse transformation methodology, development

of the requirements statement, was not executed for reasons

described in the succeeding section.

The translation approach established the transformation

rules and defined the process of translation within the scope

of the transformation rules. The case study was divided into

three sections for independent development from the design

specification. The three sections were screen display and

data entry; database management; and print routines. These

three sections were then merged to complete the translati,-n.

68

B. REQUIREMENTS ANALYSIS

The importance of the requirements analysis as a phase of

the initial software development life cycle has been

previously discussed. The inverse transformation methodology

encourages the definition of requirements as a step in the

transformation process to support future maintenance. In

order to fully re-create the requirements statement,

information from the original analysis must be available. In

the absence of the original requirements statement and program

development personnel, the only source for this information

is program users. When even program users are unavailable,

as is the situation with the case study, information essential

to the accurate re-creation of the requirements statement

cannot be obtained. Information determined during the

requirements analysis (see Whitten [Ref. 4]) which cannot be

obtained from the source code alone are:

* The capabilities and processes of the system in existence
at the time the new need was identified.

9 The constraints affecting system developi.ent such as
budgets, regulations, and policies.

e The business objectives of the system to include
definitions of the expected performance level and
prioritizing the objectives.

* The criteria used to determine the degree of success of
the development.

69

* A general description of the inputs, outputs, and

processes needed.

Without the above information, the re-creation of documents

in the requirements statement, such as the problem statement

and data flow diagrams, would not be accurate. Therefore, to

avoid misleading program maintainers the requirements

statement is not included in this case study.

C. DESIGN STRATEGY

Structured analysis and design tools described by Page-

Jones [Ref. 5] were used to develop the design specification

for the case study. The basic task of the inverse

transformation methodology is to invert the normal design

process by working backwards from the source code to the

design specification. Structured analysis and design defines

the order in which each tool is created. The inverse

transformation methodology reverses that order, which is

described as follows. Source code is used to produce

structured English. Structured English is used to produce the

structure chart. The structure chart is used to produce the

data dictionary. Each structured analysis and design tool is

discussed in the following sections.

70

1. Structured English

Structured English (Ref. 4] is a $-ool that combines

plain English with simple structured programming constructs

to describe program routines. Structured English is written

as short, precise sentences describing data transformations

and flow of control. Structured English sentences are

composed of imperative English verbs describing action, data

dictionary terms as the subject of the action, and reserved

words commonly used in structured programming to denote the

logical flow of the program. There is no universally

accepted, formal dialect for structured English. This is an

advantage because it allows the software maintainer to

establish the compromise between rigid control and the

readability that is right for a specific project. Once that

balance is reached, consistency of use is the most important

factor to keep in mind. The structured English syntax

suggested by Whitten, Bentley, and Ho (Ref. 4] provided the

baseline for the dialect used in the case study.

In structured analysis and design, data dictionary

entries are used as the subject of structured English

sentences. In the inverse transformation methodology, these

terms are extracted directly from the source I1",9. In the

case study, terms used as the subject in structured English

71

sentences were added to the data dictionary as they were

introduced. Although this appears to conflict with the

pattern of development described above, it was a logical

decision which is discussed in more detail in the section on

the data dictionary.

The most significant problem encountered in developing

the structured English constructs from the source code is the

strong tendency to re-write lines of code into English

sentences. The result was inevitably too detailed and

programming language specific to be useful to the software

maintainer. Routines should be generalized first, then

written as structured English. The method used in the case

study to achieve a generalized view of program routines was

to first write out what each routine did in plain English.

The English text was then formalized into structured English.

The point of this method was to avoid creating the structured

English directly from the source code listing.

2. Structure Chart

Structure charts [Ref. 4] are based on the use of

structured programming and design techniques for top-down

software development. The overall problem to be solved is

first identified, then broken ic-wn into a seri ' f ?ralle:

problems or steps which solve the problem. These steps are

72

further broken down into a series of more detailed steps,

building additional levels of steps until the degree of detail

required to code the program is achieved. The structure cbart

graphically depicts this approach.

Structure charts are made up of modules, module

connections, and module communications. Modules are

graphically illustrated by a rectangle. Within the rectangle

is a phrase describing what action is done by the module.

The phrase should be very specific about what the module does,

not how it is done. Low level modules represent single

program functions while higher level modules represent a group

of lower level modules which collectively define some larger

task. The symbol that represents connections between modules

is the arrow. The direction of the arrow determines which

module is the calling module and which is the called, or

subroutine module. For example, an arrow pointing from

module A to module B represents the occurrence of three

events: module A calls on module B; module B accomplishes its

function; and control is then returned to module A. Module

communications is illustrated by a small arrow with a circle

on its blunt end. Communication arrows show what information

is being sent between modules, with the direoti:.I f - .,

showing which direction the information is flowing.

73

Structure charts were used in the case study for two

reasons. First, a graphical method of depicting program

design, including inter-relationships between ZLActions and

data flow, is an extremely important element of structured

analysis and design. Second, of the most commonly used

methods (which include but is not limited to Warnier/Orr

diagrams, decision trees, and decision tables), structure

charts are the most widely used and familiar to software

maintainers [Ref. 4].

For the case study the structure chart was developed

from the structured English constructs. This method was

chosen for consistency with the design strategy.

Additionally, a draft structure chart which excluded specific

details of communication between modules was developed during

the study of the source code. The development of a draft

structure chart is a technique that will improve the software

maintainer's understanding of the program. It is recommended,

but the maintainer should expect significant changes in the

final product.

3. Data Dictionary

The data dictionary records information about data

used in the program. Each piece of data is civ-en a name.

Each name is associated with specific information about the

74

range of values it may acquire and its physical format. In

structured analysis, data dictionary entries are drawn largely

from data flow diagrams in the requirements statement. In the

inverse translation methodology, both the structure chart and

structured English constructs are used as sources for data

dictionary entries.

Data dictionary data can be one of two types,

composite data or data elements. Composite data is data that

can be divided into simpler components. Composite data is

defined in the data dictionary as the sum of its components.

Components of composite data can be either composite data or

data elements. Data elements are data which cannot or should

not be subdivided into simpler components. Data elements are

defined in terms of the values they may acquire.

In the case study entries were made in the data

dictionary as soon as entries were identified during the

development of both the structure chart and the structured

English constructs. This method greatly sped up the

completion of the data dictionary and facilitated the

verification of the information contained in the data

dictionary.

The data dictionary is essential in undei.tari*ini ti-h

way data is used in a program and in helping the software

75

maintainer keep track of the myriad details of the program.

The data dictionary is a vital document that should be updated

and maintained as the program changes.

D. TRANSLATION APPROACH

The objective of the case study was the translation into

C of source code written in PASCAL using the inverse

transformation methodology. The translation approach defines

the transformation rules followed and the specific steps

expected to accomplish the translation. The transformation

rules are:

Rule 1. Structured English will be used to describe program
routines.

Rule 2. Structure charts will be used to graphically depict
program modularity and module relationships.

Rule 3. A data dictionary will be used to describe all
information about program data.

Rule 4. The source code will be divided into three sections
of development: screen display/data entry; database
management; and print routines.

Rule 5. Each development section will be independently
evaluated to determine the best method of programming.

Rule 6. The priorities for determining the best programming
method are (from highest to lowest priority): direct reuse
of source code modules; use of a software tool to generate
code; and manual programming from scratch.

Rule 7. Program coding must accurately reflect the design
specification.

76

Within the scope of the transformation rules, the

translation process was developed into a sequence of specific

steps. Steps in the translation process are summarized in

Figure 4. The purpose and expected results of each step are

described in the following sections. The actual results and

difficulties in executing each step is described in Chapter

VI.

1. Step 1: Develop the Design Specification

See section C of this chapter.

2. Step 2: Evaluate Screen Display/Data Entry Development

Section

The original source code for this section was

developed using a code generator to produce a skeletal

framework. The framework underwent major modifications which

profoundly reduced the usefulness of the generated code. This

appears to be a duplication of effort for reasons which can

only be surmised given the lack of development information

available. Possible reasons include:

" The developers may have been unaware of the limitations
of the code generator.

" User acceptance of the unmodified displays and data entry
processes may have been poor.

" Computer memory limitations or other code -,ptimizatiQn
needs may have led to the modifications.

77

STEPS IN THE TRANSLLTION APPROACH

1. Develop the Design Specification
2. Evaluate the Screen Display/Data Entry Development Area
3. Program the Screen Display/Data Entry Display Area
a. Develop a Prototype
b. Identify Deficiencies
c. Weigh Deficiencies
d. Make Programming Decision
e. Test the Programming Effort

4. Evaluate the Database Management Development Area
5. Program the Database Management Development Area

a. Develop a Prototype
b. Develop the Linked List

6. Connect the Database Management and Screen Display/Data
Entry Prototypes

a. Program Routines for a Single Record
b. Program Routines Involving the Linked List
c. Test Connection Routines

7. Evaluate the Print Routines Development Area
8. Program the Print Routines Development Area
a. Review the Source Code Documentation
b. Develop a Prototype Framework
c. Perform the Automated Translation
d. Test the Translated Code
e. Make any Necessary Modifications

9. Connect the Print Routines Prototype
10. Test the Program
a. Develop the Test Database
b. Exercise all Program Functions
c. Demonstrate Source Code Compilability
d. Demonstrate the Use of a User Database
e. Correct Discrepancies

11. Review the Tested Program
a. Delete Unproductive Code
b. Review Source Code Format
c. Review Embedded Comments

12. Ongoing Translation Steps
a. Revise Design Specifications as Necessary
b. Develop/Update User and Programmer Manuals

figure 4 - Step* in the Translation Approach

78

The best method for coding the screen display was

determined to be the code generator used in the original

development. The old source code could not be reused because

many of the routines were hardware dependant and some routines

were originally written using inline assembly language. In

some cases it was impossible to determine if a routine was a

strictly generated routine or one that had been modified. The

lack of comments in the source code made the purpose of some

routines difficult to determine.

The code generator, Softcode by the Software Bottling

Company, generated code in C as well as PASCAL. The features

described for data entry processes closely reflect the

requirements of the design specification, and greatly reduced

the coding effort for data entry validation. The screen

display development feature was simple to use and sped up the

normally slow process of coding screen graphics.

3. Step 3: Program the Screen Display/Data Entry

Development Section

The following steps were defined to accomplish the

programming of the screen display/Data Entry development

section.

Step 3A: Develop a Prototype. Create a simple test program,
or prototype, to evaluate the code generated by the Softcode

79

software. The code generated should be compilable by the
Microsoft C compiler. The code should be clearly
understandable, consist of modular routines, and be
documented with comments. The code should perform the basic
functions required by the design specification for the
screen display/data entry development section.

Step 3B: Identify Deficiencies. Compare the functionality
of the prototype with the requirements of the design
specification. Identify as deficiencies design requirements
that are not achieved by the prototype.

Step 3C: Weigh Deficiencies. Compare the programming effort
required to make the prototype conform to the design
specification with the effort of manual programming. Take
into account other factors beside the time required to do
the programming. Other factors are difficulty in
maintaining the code, added complexity, coupling and
cohesion considerations, and efficiency.

Step 3D: Make ProQramminq Decision. Based on the evaluation
of the code generation deficiencies, make the decision to
either modify the prototype or program the development
section manually. Complete the initial programming effort.

Step 3E: Test the ProQramming Effort. Test the program for
conformance with the functionality required by the design
specification. For example, numeric fields should not
accept non-numeric data entries; fields which display
computations based on other fields should be verified for
correctness; display only fields should not be modifiable;
etc. Correct errors and retest until the program works
correctly.

4. Step 4: Zvaluate the Database Management Development

Section

The original source code used the software package

BTRIEVE from Novell to perform database management functions.

BTRILVE is a memory resident program that manipulates the

database based on instructions provided by the source program

80

via a function call. The database management evaluation was

divided into two separate sections, initial display and

selection of database records, and updating the database.

Updating the database required routines for adding,

deleting, and updating database records. The use of the

BTRIEVE software simplified the routines required for these

functions. The best translation method for this section was

determined to be direct reuse of original source code

routines.

Initial display and selection of database records was

managed in the original source code by copying all information

about every record into an array which was modified

concurrently with modifications to the database. The reason

for the lack of consideration of memory limitations is

unknown. It is possible that the number of records in the

database was expected to remain small. Additionally, special

routines were written to manage scrolling and highlighting

among records, a departure from the screen display methods

used for other screens. The translation method chosen for

this section was a combination of use of the Softcode code

generator to develop the selection screen and the addition of

certain manually programmed routines to enhance the oenerated

code. The amount of information held in memory was reduced

81

to only those fields displayed on the selection screen by use

of a linked list. Memory for the linked list was allocated

only as required.

5. Step 5: Program the Database Management Development

Section

The following steps were defined to accomplish the

programming of the database management development section.

Step 5A: Develop a Prototype. Develop a prototype program
which uses the BTRIEVE database manager to perform these
functions: open and close the database; and add, delete, and
update database records. Use the test database created by
the original program to verify prototype functionality. Use
the file format, database structure, and data names used in
the original program.

Step 5B: Develop the Linked List. Write routines to manage
a linked list of records from the database. Include only
data from each record required for display on the selecticn
screen. Functions required are initialize linked link, and
add and delete linked list data. Include the routines with
the prototype. Re-test the prototype program.

6. Step 6: Connect Database Management and Screen

Display/Data Entry Prototypes

The following steps were defined to program the

connection between the prototypes into a combined prototype.

Step 6A: ProQram Routines for a SinQle Record. Prototype
connection routines for single records establish the data
paths between data entry screens and the database. Each
prototype used unique data naming conventions to maintain
clarity about the status and origin of the data. Write
routine3 which assign data retrieved from the database to
the data entry screen and rouzines which assign data
modified or added on the data entry screens to the database.

82

Step 6B: Program Routines Involving the Linked List. Linked
list connection routines include the display of the
initialized and updated linked list; updating link list data
when the data changes; highlighting a specific record for
selection; recognition when a specific record is selected;
and managing varying numbers of records in the linked list.

Step 6C: Test Connection Routines. Test for the ability to
manage a number of records ranging from zero to more than
can be displayed at one time on the selection screen. Test
that the ordering of records on the linked list is
maintained with the same criteria used by the database
manager. Test for the smooth movement of the highlight bar
from record to record and accurate selection of the
highlighted record.

7. Step 7: Evaluate the Print Routines Development

Section

The print routines development section was divided

into two functional sections. These two sections were report

generation and quick printing. The quick printing section

required routines to print pre-defined reports of all or part

of the data in a single record. Report selection is dependent

on which display screen is currently visible when the print

function key is used. The report generation section required

routines to create, delete, and print user defined reports.

No off-the-shelf software packages were used in the

original program to aid in programming the print routines.

Routines specifically coded for the print routines were

identifiable in the original program. Direct reuse ,f the

routines was selected as the primary translation method.

83

Instead of recoding the routines manually, the automated

translator TPQC was selected as the means of translation.

TPQC was selected over PTC because of insurmountable problems

recompiling the Unix based PTC program to run on the MS-DOS

operating system.

The use of a general automated code translator raised

questions similar to those concerning the use of the more

tailored Softcode code generator. The translated C code must

be compilable with only minimal additional effort by the

maintainer. The functionality of the translated C code must

be identical to the functionality of the source code.

8. Step 8: Program the Print Routines Development Section

The following steps were defined to accomplish the

programming of the print routines development section.

Step 8A: Review the Source Code Documentation. Document all
source code routines thoroughly before doing the
translation. The automated translator adds no additional
comments. Thorough documentation will aid in verifying the
accuracy of the translation.

Step 8B: Develop a Prototype Framework. TPQC requires that
the source code be syntactically correct and that the
program be functionally complete and executable. Develop
the framework of a functionally complete program, including
variable declarations and the PASCAL equivalent of the
function main. Insert the print routines into the
framework.

Step 8C: Perform the Automated Translation. FEllcw TP'QC
directions.

84

Step 8D: Test the Translated Code. Review the translated
code. Look for obvious errors in translation and code
fragments which were not translated. Make a judgement call
on the extent of the obvious errors. If problems are major,
consider manually translating print routines. If the use
of TPQC is still valid, repair minor problems which would
force failure of compilation. Compile the translated code
and correct errors.

Step 8E: Make any Necessary Modifications. Strip unneeded
code from the prototype framework of the translated code.
Add routines from the database management development
section prototype to retrieve records from the database.
Write routines to exercise the print routines. Test the
printing of every pre-defined report and the creation,
deletion, and printing of reports using the report
generator.

9. Step 9: Connect the Print Routines Prototype

Add print routines to the combined prototype. The

combined prototype has function keys programmed with skeleton

routines for calling pre-defined reports and the report

generator. Insert print routines into the combined prototype

and add print routine function calls to the skeleton routines.

Test the function calls.

10. Step 10: Test the Program

Acceptance test criteria for the case study is limited

to the following requirements:

* Retain as a minimum the level of functionality existing
in the original program.

" The translated program must be compilable by the Microsoft
C optimizing compiler.

" Current users must be able to utilize existing databases
without requiring re-entry of data.

85

The development of a test database was required to

exercise the functionality of the translated program. No user

or sponsor test database was provided. Therefore, the test

database was developed by the software maintainer, which

restricted the effectiveness of the functionality test.

The following steps were defined to test the translated

program:

Step 1OA: Develop the Test Database. Develop the test
database in concert with exercising program functions.
Begin with a database with no records. The target size for
the test database is twenty records.

Step 1OB: Exercise All ProQram Functions. Add, delete, and
modify records. Exercise all function key options available
for each display screen. Test the use of keyboard keys not
defined as options to check for unexpected results. Note
discrepancies.

Step 1OC: Demonstrate Source Code Compilability. Compile
and link all source code with the Microsoft C optimizing
compiler.

Step 1OD: Demonstrate the Use of a User Database. Use the
sample database provided by the sponsor to demonstrate the
use of a user database. Although the sample database is not
fully developed for use as a test database, it is acceptable
to test file format compatibility with the translated
prcq: am. Exercise step 10B using this database.

Step 10E: Correct Discrepancies. Make program changes as
necessary to correct discrepancies discovered during
testing. Re-test the program.

86

11. Step 11: Review the Tested Program

The purpose of this step is to "clean up" the

translated source code. Variables and lines of code that do

not affect the execution of the program but serve no purpose

seem innocuous. However, unproductive code clouds program

understanding and makes future maintenance more difficult.

Consistent source code formatting aids readability. Comments

embedded in the source code are critical to program

maintenance. Comments should explain what the code

accomplishes, not a line by line description. The following

steps were defined to review the tested program:

Step 11A: Delete Unproductive Code. Delete unused
variables, including variable declarations and all
references to the unused variables. Delete unused lines of
code, including definitions, never called functions, and
other stray code. Sections of the program which were
modified due to discrepancies discovered during testing are
prime sections for seeking unproductive code.

Step 11B: Review Source Code Format. Review source code
format for consistency.

Step 11C: Review Embedded Comments. Review embedded
comments for its value to the software maintainer. Add
additional comments where warranted.

12. Step 12: Ongoing Translation Steps

Ongoing translation steps overlap all other steps,

proceeding alongside other steps rather than occupying a

specific place in the translation approach. These steps

87

overlap because each step in the translation approach may have

some impact on the completion of these ongoing steps.

Step 12A: Revise Design Specifications as Necessary. For
design specifications to be helpful to the software
maintainer, the specifications must accurately reflect the
latest version of the program. Modifications made to the
program which affect the design specification must be
reflected with identical changes to the design
specification. Program modifications affecting design
specifications are most likely to occur during prototype
testing and acceptance testing.

Step 12B: Develop/Update User and Programmer Manuals.
Changes to program functionality, the appearance of display
screens, and the purpose of user initiated commands must be
reflected in thb manuals. Additionally, the reasons for the
changes, when appropriate for maintenance, should be
included in the Programmer manuals.

8P

VI. CASE STUDY APPLICATION

A. OVERVIEW

The design strategy and translation approach described in

the preceding chapter was applied to the case study. The

practical application of the case study is intended to test

the validity of the approach. Departures from the translation

approach during the application of the case study are

evaluated. The results of the actual execution of each step

and any difficulties encountered are described.

B. TRANSLATION APPROACH APPLICATION

Each step is numbered and titled exactly as in Chapter V.

1. Step 1: Develop the Design Specification.

The development of the design specification required

the creation of three documents in the following order:

structured English, structure chart, and data dictionary.

However, it was more practical to produce the data dictionary

first using the software tool Source Print. Source Print read

the entire PASCAL source code and created a list of all

variable names and where those variables appeared in the

source code. From this list the declaration of each variable

89

was located to get the information for the entry to the data

dictionary. Creating the data dictionary using an automated

tool maximized the similarity of variable names between the

original source code and the translated source code.

Maintaining the same variable names in the translated source

code increased the similarity between the original and

translated source code and eliminated the need for a variable

cross reference list. Using this technique was possible

because C supports variable naming conventions which are very

similar to PASCAL, and might not have been possible with

certain other language combinations. The original order of

development for the design specifications should not be

revised. In general, structured English is the first document

that should be produced unless special circumstances (as in

this case study) apply.

The development of the structured English constructs

proved to be much more difficult than anticipated. The

maintainer's lack of experience with advanced programming

techniques, such as the use of overlays, direct access of

computer hardware registers, and the use of inline assembly

language, was a large stumbling block. These techniques were

heavily used in the original source code, and time constraints

became a factor in researching and learning the techniques.

90

Differences in personal programming style between the

maintainer and the original developers were also a factor that

was not initially considered. Individuals develop programming

styles that are familiar and comfortable and helps develop a

habit of consistency. In theory, personal programming habits

should not be a factor at the design level of development

[Ref. 1], and even in practice may not be a problem for many

programmers. However, it was a factor for the maintainer.

Personal programming style encompasses a wide range of

programming habits, but the concern with this case study was

the manner in which the program was organized. The original

program was not organized poorly. It was organized

consistently and was within the bounds of good structured

programming practice. However, the form of the organization

was different from the habits developed by the maintainer.

Since structured English is just one step removed from the

source code, this difference directly impacted the development

of the structured English. The maintainer was required to

make a choice between following the style of the developer or

adjusting the style to something more familiar. Selecting the

developer's style has the advantage of reinforcing the

similarities between the original and translated prcgrams and

the disadvantage of working with a programming style that is

91

foreign to the maintainer. Selecting the maintainer's style

has the advantages of familiarity and the disadvantages

associated with departing from a strict translation. The

decision made was to use the programming style of the

maintainer. The general functionality of the case study was

well understood by the maintainer, but there was uncertainty

at the more detailed level about the advanced programming

techniques used. For this reason it was felt that maintaining

a familiar programming style would yield more consistent,

understandable source code and would not detrimentally affect

the overall functionality of the translated program.

The structure chart evolved naturally from the

structured English and the draft structure chart created

during the initial study of the source code. There were no

major difficulties in developing the structure chart.

2. Step 2: Evaluate Screen Display/Data Entry Development

Section

The evaluation of the screen display/data entry

development section was straightforward. No problems with

executing this step were encountered.

92

3. Step 3: Program the Screen Display/Data Entry

Development Section

The code generator was used to produce all data entry

screens. The code generator also created data field checking

routines to ensure that the user entered only valid data. The

code produced by the code generator was excellent. The

routines were highly modularized, easily understood, and

consistently commented with a clear description of the

routine's function.

The generated code included a special routine which

allowed the maintainer to test the program without requiring

additional coding. The maintainer was able to view all

screens and test the data entry features of each field.

Errors made by the maintainer in programming the code

generator were identified early for correction. Changes were

made easily and then the code was re-generated. This step was

considered to be a pre-prototype step because the generated

code did not evaluate the use of function keys and special

keyboard keys required by the design specification. This step

did validate the appearance of the display screens and data

entry checking routines and should have been included as an

independent step within Step 3. This step repieseits the

93

maintainer's only departure from the steps defined within Step

3.

There were no cases where the generated code

incorrectly implemented a design specification. There were,

however, three specifications that were beyond the capability

of the code generator. A description of how the code

generator manages data fields is required to explain the

problem.

In general, data fields are defined by the code

generator as one of two types, display-only fields and fields

that can be modified by the user. Modifiable fields are

highlighted when the cursor is placed on that field. Display

only fields, which cannot be accessed by the user, are coded

in such a way that they were not very accessible to the

maintainer. The design specifications required that on one

screen the user would highlight the field desired and select

various options for action on the highlighted field. The

specifications further required that these fields could not

be modified by the user. The code generator was unable to

produce a field that could be highlighted but not modified.

Two options were considered to resolve the problem, modifying

the generated code and manually coding the pr,lenm screen.

Since a significant amount of useful generated code would be

94

discarded if manual coding were dcne, modification of the

generated code was selected as the best option.

The second problem concerned the method used by the

code generator to calculate and display information computed

from other fields on the screen. The code generator required

that the position of the decimal in a number had to be

permanently assigned and hard coded into the program.

Variable decimal positions were not allowed. Calculations

based on decimal numbers were dependant on the pre-defined

position of the decimal. The design specifications required

that the user be allowed to use numbers with variable decimal

positions that could be changed at the discretion of the user.

The problem was resolved by adding a new routine to handle

decimal number data entry and revising the computation

routines of the generated code.

The third problem was the lack of generated routines

to manage function key and special keyboard key selection by

the user to move between screens and perform special

functions. The code generator did provide shell routines to

facilitate the manual coding process. The largest manual

coding effort for this development section was devoted to

writing these routines.

95

In evaluating code generation deficiencies, the

problem sections were not considered significant enough to

warrant a decision to program the entire development section

manually. All problems were satisfactorily re-olved and the

resulting code conforms to the design specifications. No

major deficiencies were noted during testing.

4. Step 4: Evaluate the Database Management Development

Section

A major problem in the database was identified during

this step. The BTRIE-E record manager can be used with

several programming languages, including both PASCAL and C.

Based upon the initial review of the BTRIEVE manual, it

appeared to the maintainer that the database c-reated by the

original PASCAL program was compatible for use by the

translated C program. This was not the case.

There is a fundamental difference in the way strings

are stored in the two languages. C requires a terminating

null character which identifies the end of the string. PASCAL

strings do not have this terminating null character because

strings are terminated in a different way. The result is that

a string will be one character longer in C than will its

counterpart in PASCAL. A string without the terminatinq null

character, such as a string stored by a PASCAL program, can

96

create catastrophic problems in a C progran. Since the use

of the original database was considered a very important

requirement, the means to manage the string problem was

investigated during t', succeeding programming step.

5. Step 5: Program the Database Management Development

Section

P-ototype development was conducted based on the

decision by the maintainer to use the original, PASCAL created

database. Original source code was directly reused by

manually recoding the PASCAL routines into C for all major

specifications (open and close the database; and add, delete,

and update records). Additionally, special routines were

created to manipulate strings without the terminating null

character. The linked list management routines were created

manually because they did not exist in the original program.

The linked list routines were included in the prototype and

testing was completed satisfactorily.

This approach failed during Step 6. The reasons for

the failure are discussed in the next sect4.on. Due to the

failure, the maintainer decided that it was not practical to

use the original PASCAL created datalbase. The next best thing

was to use the data stored in the original database t', build

a new, C compatible database. Step 5 was repeated with one

97

additional step added. A conversion program was written to

convert the PASCAL database to its equivalent C compatible

database. Only slight revision to the prototype was required

to accommodate the converted database and the special string

management routines were deleted.

6. Step 6: Connect Database Management and Screen

Display/Data Entry Prototypes

After the initial completion of step 5, conversion

routines to manage the transfer of data between the database

and the data entry screens were begun. As the coding process

continued, the maintainer became aware that the conversion

routines were taking up the bulk of the coding time and that

the amount of code being produced was disproportionately large

when compared with the size of the routines that actually used

the data. This approach appeared to be inefficient and an

alternative was sought.

The maintainer contacted technical support personnel

at Novell, the makers of BTRIEVE, for advice. The Novell

technical personnel could not provide a better method to

streamline the conversion process or reduce the risk to the

database. They strongly recommended that the PASCAL created

database be converted to the C format before being used by the

translated C program. Since the conversion program would only

98

have to be run once, as part of the installation of the

translated code, and no user entered data from the original

database would be lost, the maintainer made the decision to

convert the database.

The database conversion program proved relatively

simple to build. In retrospect, the database conversion was

the better of the two options. No other significant

departures from the planned steps were required for Step 6.

7. Step 7: Evaluate the Print Routines Development

Section

The evaluation of the print routines development

section was completed with no significant problems.

8. Step 8: Program the Print Routines Development Section

Two PASCAL programs were developed, one for quick

print routines and the second for the report generator, from

the original source code. PASCAL programs were necessary in

order to use the automated translators, which required as

input an executable PASCAL program.

A prototype framework was built around the quick print

routines and an executable PASCAL program was successfully

developed. Numerous problems evolved in attempting to

translate the PASCAL program to C using T'Q'j. Minor

idiosyncracies, legal in PASCAL but confusing to TPQC, were

99

changed to accommodate TPQC and translation was attempted

several times. TPQC continued to flag sections as

unacceptable which were legal and compilable in PASCAL. Most

frustrating was the fact that the translation process aborted

following the identification of each translation error. There

was no way to tell how many total errors would have to be

corrected. Error messages were sparse and left the maintainer

guessing as to what the problem might h . Due to these

problems and fading confidence in the ability of TPQC to

produce acceptable C code, the use of TPQC was abandoned for

the quick print routines program. The PASCAL code was reused

by direct manual re-coding, which presented no difficulties.

TPQC did not get a second chance with the report

generator routines. The total size of the routines, not

counting the framework required to make it a complete program,

exceeded the 64 kilobytes program size limit required by Turbo

PASCAL 3.0. An attempt was made to compile the code using

version 4.0, but basic differences in the design of the two

versions (primarily the change from include files to the use

of units) made this option infeasible. The source code for

the report generator used heavily nested procedures, assembly

language, and frequent calls to hardware registers. Manually

recoding the original code was considered beyond the

100

experience of the maintainer. The maintainer had a good

understanding of the overall functionality of the report

generator, and could have coded the report generator manually

from scratch, but time did not permit this. The translation

of the report generator portion of the print routines

development section was determined to be beyond the scope of

this thesis.

9. Step 9: Connect the Print Routines Prototype

Skeleton routines were already available to link the

quick print routines to the combined prototype. Only minor

difficulties were encountered in completing this step.

10. Step 10: Test the Program

In accordance with the testing procedure, the test

database was initialized with no records. Records were added

to test the record selection process and testing was conducted

on function key and special keyboard key use. During the

testing of individual fields for correct error checking, a

major problem was discovered with the first worksheet screen

used for data entry and update of single records. No other

screen was affected. Previous testing of this screen had

revealed no problems, but only limited data entry into

individual fields had been done.

101

Exercising additional fields on this screen disengaged

the function key commands to exit the screen, including the

maintainer coded "hotkey" (the ESCAPE key) intended to bypass

the problem. The program remained active, and fields could

be edited on the screen, but the program would not exit from

the screen. Diagnosing this problem took the maintainer

several days, but was finally traced to a programmer error

that was inadvertently resetting the variable that flagged the

exit screen routine. There were no other major problems

encountered during the testing phase.

11. Step 11: Review the Tested Program

The Microsoft C compiler included a program to check

source code for unproductive code. This program was extremely

helpful in eliminating stray code which might have complicated

future maintenance. Additionally, Source Print was used to

produce a neat, easily readable printed copy of the source

code. The use of "pretty printer" programs such as Source

Print is recommended.

12. Step 12: Ongoing Translation Steps

Every attempt was made to update the design

specifications when practical coding considerations warranted

modification of the specifications. In practice, hc-wever,

this is not an easy task, and the maintainer did not always

102

comply with that step. The maintainer still recommends doing

the updates as they happen, but when this is not feasible, the

change should be immediately noted in writing so that

corrections to the design specifications can be made at a more

practical time. The user and programmer manuals began as text

files that the maintainer made notes in as the development

proceeded. The notes provided a solid base from which to

write the formal manuals.

C. CORRECTION OF APPLICATION INCONSISTENCIES

Chapter II, section D described inconsistencies in the

original program discovered during the initial review of the

case study. Original application inconsistencies which were

corrected are listed in the following sections.

1. Screen Movement

All arrow keys provide consistent movement between

fields for each data entry screen. The PageUp/PageDown keys

are used only for movement between certain screens during the

data entry process. When these keys are active, they are

displayed as options in the bottom screen menu display.

2. Function Key Use

All function keys which are active for the currently

displayed screen are listed in the bottom screen menu display.

Each function key is assigned only one function that is

103

consistent throughout the program. When the function key is

not displayed in the bottom screen menu, it is not active and

nothing will happen if the key is pressed. The <F9> function

key was disabled because the change screen color function was

eliminated.

3. Report Generator

The translation of the report generator was determined

to be beyond the scope of this thesis. A display screen

advising the user that this option is not available was

provided.

4. Other

The constraints on the number of lines of task

description could not be eliminated, but the number of lines

allowed were increased. Saving changes to the task worksheet

can be accomplished any time upon exiting the task worksheet.

It is not required that the user exit the program to save

changes to the task worksheet. Additionally, the user will

always be asked if changes should be saved.

104

VII. CONCLUSION

The purpose of this thesis was to investigate software

reusability applications and the practical utilization of

those applications in the performance of software maintenance.

The translation of a functioning program from one high level

language to another was selected as the type of software

reusability effort to be explored. Five translation

methodologies were investigated and the inverse transformation

methodology was chosen. A design strategy and translation

approach was developed based on the inverse transformation

methodology. The translation approach was followed in

performing the translation of the case study.

The results of the translation are encouraging. The

inverse transformation methodology provided the high level

framework necessary to develop the translation approach. From

a practical viewpoint, no significant departures from the

steps described by the translation approach were necessary to

satisfactorily complete the translation. The additional

advantage of this methodology was the creation of design

specifications for the translated program which can be ,ised

in future maintenance efforts. The use of one tool for

software reusability, the inverse transformation methodology,

105

created a second tool for software reusability, the design

specification.

Finally, the versatility of the inverse transformation

methodology, which allows unrestricted determination of the

design strategy, permitted the use of additional reusability

tools such as code generators. Significant development time

was saved despite the documented problems in using these

tools.

106

LIST OF Z1RcZS

1. Jones, T. C., "Reusability in Programming: A Survey of the
State of the Art", Tutorial: Software Reusability, IEEE
Computer Society Press, 1987.

2. Horowitz, E., and Munson, J., "An Expansive View of
Reusable Software", Tutorial: Software Reusability, IEEE
Computer Society Press, 1987.

3. Freeman, P., "Reusable Software Engineering: Concepts and
Research Directions", Tutorial: Software Reusability, IEEE
Computer Society Press, 1987.

4. Whitten, J., and Bentley, L., and Ho, J., Systems Analysis
and Design Methods, Times Mirror/Mosby College Publishing,
1986.

5. Page-Jones, M., The Practical Guide to Structured Systems
Design, Yourdon Press, 1988.

6. GAT User's Manual, EG&G, Washington Analytical Services
Center, 1988.

7. Phillips, J., "Creating a Baseline for an Undocumented
System - Or What Do You Do With Someone Elses Code?", The
Record of the 1983 Software Maintenance Workshop, IEEE
Computer Society Press, 1984.

8. Fay, S., and Holmes, D., "Help! I Have to Update an
Undocumented Program", The Proceedings of the Conference on
Software Maintenance-1985, IEEE Computer Society Press, 1985.

9. Jensen, K., and Wirth, N., Pascal User Manual and Report,
Springer-Verlag, 1974.

10. Gehani, N., C: An Advanced Introduction, Bell Telephone
Laboratories, 1988.

11. Kernighan, B., and Ritchie, D., The C Programming
Language, Prentice-Hall, 1978.

107

12. Feuer, A., and Gehani, N., "A Comparison of the
Programming Languages C and Pascal", Comparing and Assessing
Programming Languages Ada, C, and Pascal, Prentice-Hall, 1984.

13. Sneed, H., and Jandrasics, G., "Inverse Transformation of
Software from Code to Specification", Proceedings, IEEE
Conference on Software Maintenance, IEEE Computer Society
Press, 1988.

14. Arango, G., and Baxter, I., and Freeman, P., and Pidgeon,
C., "TMM: Software Maintenance by Transformation", Tutorial:
Software Reusability, IEEE Computer Society Press, 1987.

15. Marcotty, M., and Ledgard, H., Programming Language
Landscape, Science Research Associates, 1986.

16. Yellin, D., "Attribute Grammar Inversion and Source-to-
Source Translation", Lecture Notes in Computer Science,
Springer-Verlag, 1988.

17. Glockenspiel Turbo Pascal-To-QuickC Translator Howto
Documentation, Microsoft Corporation, 1987.

18. Bergsten, P., PTC Implementation Note, Holistic Technology
AB, 1987.

108

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0412 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, DSS Directorate (DRI-S) 1
Defense Systems Management College
Fort Belvior, Virginia 22060-5426

4. LCDR Charles Bell 1
326 Valley Road
Etters, Pennsylvania 17319

5. LCDR Rachel Griffin 2
Code CS/gr
Naval Postgraduate School
Monterey, California 93943-5002

109

